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Abstract

As a result of recent changes in the policy governing Internet content distribution, such
as the institution of per listener royalties for Internet radio broadcasters, content distributors
now have an incentive to under-report the size of their audience. Existing metering protocols
only protect against inflation of audience size. We introduce the first protocols for audience
metering that protect against deflation attempts by content distributors. The protocols
trade-off the amount of additional information the content distributors must distribute to
facilitate metering with the amount of infrastructure required and are applicable to Internet
radio, web plagiarism, and software license enforcement.

1 Introduction

Internet content distributors often need to prove to a third party that they have a certain
number of visitors or listeners. Such information is usually used to set advertising rates, so
content distributors have an incentive to inflate these numbers. Franklin and Malkhi introduced
inflation-secure metering schemes [15] to prevent this type of fraud and many variations and
improvements have subsequently been proposed (e.g., [23, 20, 24]). The most secure of these
protocols are token-based, meaning clients possess special tokens that are hard for the content
distributor to generate. When clients request content they provide the distributor with a token
and the distributor is able to use the tokens to generate a short “proof” that it has the claimed
number of clients. Because the content distributor cannot generate the tokens itself, it is unable
to inflate its client count.

With the advent of per-listener royalty fees for Internet radio [17] and the growth of web
content plagiarism [13], content distributors now have an incentive to report artificially small
audiences, but no existing protocol prevents such behavior since the distributor can simply
ignore the portions of its interactions with clients that are necessary for metering. For example,
with a token-based metering scheme the distributor may simply discard client tokens to lower
its client count.

We present two new client metering protocols that prevent content distributors from report-
ing artificially low audience sizes. Both protocols leverage the relative anonymity of the Internet
to enable an auditor to monitor the content distributor’s interactions with clients. Essentially,
the auditor poses as a client in its interactions with the content distributor. Since the content
distributor cannot distinguish the auditor from any other client, it cannot disregard the metering
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portion of the protocol without risking detection. Previous metering schemes use secret-sharing
to distill a short proof of audience size from all the client protocol interactions. Since these tech-
niques aren’t deflation-secure, we use other techniques to decrease communication overhead.
Both of our protocols are quite practical, requiring only a few bytes per client interaction.

Our first protocol (see Section 3) requires essentially no additional infrastructure. The
content distributor simply maintains a Bloom filter [5] that encodes the client IDs (anonymized
to preserve privacy) of all clients who have requested the content. The Bloom filter is small
in applications such as micro-broadcasting. The protocol offers protection against deflation
because the auditor can verify that its anonymized ID was one of the inputs to the filter. This
protocol cannot detect inflation, but it can be combined with a standard inflation-secure scheme
to detect both types of cheating.

The second protocol (see Section 4) uses encryption to offer protection against both inflation
and deflation. A trusted party randomly allocates to each client a subset of a global set of
keys. The content distributor makes the content publicly available (e.g. by posting a file on
the web) in encrypted form using an encryption key known to all of its clients. If the keys are
allocated according to a well-chosen distribution, then the auditor can estimate the number of
clients based only on the encryption key the content distributor is using. Hence, the encryption
key serves the same purpose as the Bloom filter in the previous protocol; both encode the client
requests. This protocol requires essentially no additional communication (that is, other than
the encrypted content) on the part of the content distributor, but doesn’t completely preserve
the privacy of the clients. Table 1 summarizes the main features of our protocols.

Finally, we observe that deflation security essentially requires the content distributor to prove
the lack of knowledge of client requests and so is an inherently harder problem than inflation
security which is solvable by requiring proofs of knowledge of client requests. Hence, we believe
that any solution to this problem will involve the imperceptible monitoring of content distributors
for protocol compliance, and therefore, anonymous networks, as our protocols do. Note that
the current Internet offers relative anonymity and, by virtue of dynamically assigned addresses
and dial-up connections, relative unlinkability. Further, emerging peer-to-peer technologies may
support perfect anonymity in the near future. Thus, we analyze our protocols in the context of
perfect anonymity, and believe they degrade gracefully in the current Internet.

Overview. This paper is organized as follows. We discuss related work in Section 1.1. Our
model is described in Section 2. We present and analyze an easily implemented deflation-secure
protocol in Section 3 and a deflation-secure protocol with constant overhead in Section 4. We
conclude in Section 5 with open problems.

1.1 Related Work

One of the first methods for counting the number of visitors to a web site is due to Franklin
and Malkhi [15]. Naor and Pinkas [23] present a protocol with stronger security guarantees
[15]. Ogata and Kurosawa [24] identify flaws in the Naor and Pinkas scheme, and propose their
own. The Naor-Pinkas model has been generalized and analyzed extensively [6, 20, 7, 28]. In a
similar vein, Kuhn [19] presents a scheme by which an auditor can efficiently verify the number
of unique signatures on a document, with applications to digital petitions and web metering.

The methods currently used to measure audience size are far more primitive than anything
proposed in the above papers. The simplest audience measurement technique counts the number
of entries in the server’s log files [9]. Since it is easy for the server administrator to delete or
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Scheme Protocol 1 Protocol 2
Deflation protection Yes Yes
Inflation protection No Yes
Privacy preserving Yes No

Communication overhead O(n) O(1)
Counts cumulative audience Yes Yes

Counts current audience Yes No

Table 1: The main features of the schemes presented in this paper. The number of clients is
denoted by n.

insert entries into the log files, these numbers cannot be trusted. In the specific case of counting
the number of visitors that see an advertisement, the trustworthiness of the measurements can
be improved by having the advertising agency serve the ad directly [14]. In this arrangement, the
ad agency can under-report the number of ads it serves, thus lowering the advertising fees it pays.
Reiter, Anupam, and Mayer [26] propose a scheme for detecting this sort of fraud. Conversely,
Mayer, Nissam, Pinkas and Reiter [3] describe general attacks for inflating the number of ads
that appear to be served through a given web page.

The size of a particular website’s audience can also be gauged by consumer surveys and
focus groups [2, 27]. These numbers can be fairly accurate, but this method is expensive. Some
audience measurement services combine log analysis and consumer surveys [2, 10]. Similarly,
audience size can be measured by having web surfers keep a diary of the sites they visit, although
these numbers are prone to accidental error as much as malicious mis-reporting [12, 27].

All the audience measurement techniques above are designed for determining advertising
rates and thus are only concerned about attempts by the content distributor to inflate the
audience size. In all the schemes above except the survey and diary methods, the content
distributor can easily deflate the size of her audience. In the context of advertising, content
distributors have no incentive to do so, hence this has not been a problem. This is not the case
when the audience size is being measured to determine royalty fees. Ours are the first schemes
we know of that attempt to prevent the content distributor from deflating her audience size.

Finally, we note that secure voting (see for example, [8, 25]) is also concerned with accurate
audience measurement. However, voting protocols tend to be fairly heavyweight due to the
requirements of that setting (e.g. public verifiability) hence we don’t believe those techniques
are directly applicable to the content distributor setting.

2 Model

Our protocols involve a content distributor (CD), clients, and in the case of the protocol of Sec-
tion 4, a trusted party (TP). We call a client that is interested in ascertaining the CD’s audience
size, an auditor. The goal of our protocols is the production of a trustworthy measurement of the
number of client requests the CD has received even though the CD has an incentive to deflate
this measurement. We typically denote the actual number of clients over a specified interval by
n, and the maximum number of clients over the same duration by nmax. Although we describe
our protocols in the context of measuring client requests over an extended time interval (as is
done, for example, with web site “hit” counts) the protocol of Section 3 can easily be adapted
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to measure the number of currently active clients (or streams, in unicast applications).

2.1 Requirements

Our goal is to achieve security guarantees that are comparable to those of the ideal model
in which a trusted third party ensures accurate, deflation-secure audience metering, but with
substantially more practical protocols. This suggests a trade-off between efficiency and accuracy
and we believe this is unavoidable. Hence, we require that our protocols are tunable to the
desired level of accuracy. Our objective is to maximize the gain in accuracy that comes with
each decrease in efficiency.

Tunable Deflation-Security and Accuracy. In most of the applications we consider,
it makes sense to assume that CDs and clients are aligned against the auditor, hence we need
to protect against attempts by the CD and the clients to conduct their transactions “under
the table”, and other collusion attacks. We offer such protection by monitoring CD/client
interactions to check for protocol compliance. Consequently, one immediate way to increase
the level of deflation-security is to increase the number of content requests by the auditor. We
show in Section 3 that in practice a high level of deflation-security can be achieved with a
reasonable number of content requests by the auditor. In addition, we note that the CD should
have to collude with a large number of clients and negotiate a new protocol in order to achieve
significant deflation. Such a high degree of collusion may be detectable by the auditor because
of the resulting discrepancy between the apparent audience size and the congestion at the site.

Accuracy is also impacted by the method of encoding client requests, that is, the more lossy
the encoding, the less accurate the resulting client count. Increasing accuracy by improving the
quality of the encoding is hence, very protocol-specific. In Sections 3 and 4 we discuss ways in
which accuracy can be improved in the protocols of those sections by increasing the amount of
information in the encodings.

Efficiency. We measure efficiency in terms of the communication overhead, client storage
and infrastructure requirements of the protocols. As mentioned earlier, our goal is to get as
close to the the ideal model as possible (i.e. no additional communication overhead or client
storage) with a far more practical protocol. Our first protocol comes with no additional client
storage and essentially no infrastructure requirements, but incurs a communication cost that’s
on the order of the number of clients. Our second protocol has constant overhead but requires
significant client storage and infrastructure.

Privacy. A deflation-secure client metering protocol should preserve the client’s privacy since
all that is being measured is a count. We note, however, that there is some advantage to
providing client anonymity while allowing request linking as this allows the CD to detect efforts
at artificially inflating its client counts. Our protocols only require anonymity, not unlinkability.

2.2 Limitations

Our protocols prevent compliant content distributors from reporting deflated audience sizes. As
long as the clients and content distributors use our protocols, we can establish tight bounds
on the probability that they can cheat successfully. However, our protocols are not complete
solutions to this problem. To see why, consider a small internet radio station that broadcasts
music on a well-known port. The radio station faithfully executes one of the deflation-secure
metering schemes described below. Thus, the auditor can be sure that the radio station only has
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a few listeners on that port. Our protocols cannot prevent the radio station from boadcasting
to a large number of users from a second port that is spread by word-of-mouth among faithful
fans1.

We can view the broadcaster described above as two separate radio stations. Now the
problem of accurately tracking audience size splits into two problems. First, we need a reliable
scheme for measuring the size of each content distributor’s audience. Our schemes address this
problem. Second, we need a reliable scheme for tracking all relevant content distributors. This
is a hard problem that we do not address in this paper. We do note that in order for the attack
described above to be effective, the radio station must collude with a large number of listeners to
ignore our protocols. The logistics of maintaining a large, secret network will impose a natural
limit on the scale of this sort of cheating.

The client anonymity we require can also be used against the content distributor. The
auditor (or any other client) may artificially inflate the audience size by repeatedly requesting
the content as a new client. Our protocols do not explicitly protect against this. One possible
remedy is to insert a trusted party between the distributor and the clients with anonymous
communication only between the trusted party and the distributor. If the content distributor
suspects this attack is underway, the trusted party’s logs can be examined. Of course, requiring
a trusted party for the sole purpose of protecting against this attack is suboptimal, however
if the protocol is such that a trusted party is already required (as is true of the protocol in
Section 4) then this approach is worth considering.

2.3 Applications

There are a number of settings in which client metering protocols that are secure against deflation
are necessary.

Internet Radio. The Internet has given rise to hobbyist Internet radio broadcasters which
have extremely small audiences. For example, according to live365.com, there are over 1000
Internet radio stations with less than 100 listening hours per month; e.g. these stations have an
average of less than one listener tuned in for 3 hours each day. A client metering protocol may
be used to prove this fact to an organization such as the RIAA.

Screen-Scraping. Websites that provide a useful service, such as Yahoo’s real-time stock
prices, often get “screen-scraped” by other web services [13]. The scraping service simply fetches
the information from the original service, parses the desired data out of the returned web page,
repackages it in a new format, and finally presents it to the client. As long as the screen-
scraping service does not overuse the original service provider, this behavior can be tolerated. If
the scraping service agrees to use one of our protocols, then the originating web service provider
can audit the scraping service to ensure that it is not abusing the original service provider.

Distribution of Licensed Content. Consider a web site that holds a limited distribution
license for content (e.g. movies, music files or software). Our protocols can be used to ensure
that the distributor does not exceed the license.

Web Advertising As described in Section 1.1, some web advertisers serve their ads directly,
and hence can under-report the number of ads they serve in order to reduce the fees they must
pay to carrying websites. Our protocols can detect this type of fraud.

1Listeners that take advantage of this back door may lose their anonymity, but we cannot guarantee the
anonymity of clients that don’t use our protocols.
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3 Estimating Audience Size with Minimal Infrastructure

Our first protocol is very easy to adopt and can be adapted to support either total request
counting or current client set counting. Its main drawback is that the bandwidth required is
linear in the size of the audience, but this protocol is quite efficient for scenarios in which the
number of clients is small, as is the case for several of our intended applications (e.g. Internet
radio micro-broadcasters).

The protocol uses Bloom filters [5], so we give a brief introduction to them here. A Bloom
filter is a lossy representation of a set and consists of a bit-vector~b of length m and s independent
hash functions h1, . . . , hs : {0, 1}∗ → N. 2 In the literature of Bloom filters, m is called the width
of the filter. Initially, the bit vector is all zeros. To insert an element x into the set represented
by the Bloom filter ~b, set the bits ~b[h1(x) mod m] = · · · = ~b[hs(x) mod m] = 1 (if a bit is already
set to 1 then it remains 1). To test whether x is an element of the set represented by Bloom
filter ~b, test that ~b[h1(x) mod m] = · · · = ~b[hs(x) mod m] = 1. Note that this test can lead to
false positives; this is why the Bloom filter is termed “lossy”. If ~b[hi(x)] = 0 for some i, then x
cannot be in the set. Bloom filters do not support item removal.

Let w(~b) denote the Hamming weight of ~b. The probability that a bit is 1 in a Bloom filter
of width m after n insertions using s hash functions is 1 − (1 − 1

m)ns. So given a filter ~b, we

can estimate the number of insertions which have been performed on ~b by I(~b) = ln(1−w(~b)/m)
s ln(1−1/m) .

To minimize the probability of a false positive, s should be chosen so that s = (ln 2)m/n,
which gives a false positive rate of

(
1
2

)(ln 2)m/n ≈ (0.6185)m/n. Hence, by varying the width of
the Bloom filter we can tune the accuracy of the protocol, with obvious consequences for the
communication overhead incurred. For example, if m/n = 8, the false positive rate using s = 5
is 0.0216 and the overhead is O(n) on each request. Finally, if ~b1 and ~b2 are two Bloom filters
of the same width, then we say ~b1 ≤ ~b2 if ~b1[i] ≤ ~b2[i] for all i.

The protocol is illustrated in Figure 1. Each content distributor maintains a Bloom filter of
width m = cn, where n is the average number of requests seen by the content distributor each
week and c is a parameter agreed upon in advance. In practice, c = 8 works well as discussed
above. When a client sends a request to the content distributor, the content distributor and
client engage in a coin flipping protocol to agree on an r bit nonce N and the content distributor
inserts N into the Bloom filter. Any standard coin flipping protocol will work [16]. They then
proceed with their normal protocols. Each week, for example, the content distributor sends the
Bloom filter to the auditor and then starts again with a fresh filter. The auditor checks that
the Bloom filter it receives, ~b, has w(~b) ≤ 2m/3 and that any nonces it negotiate with the CD
are present in the filter. For example, if the auditor has sent k requests to the CD, the auditor
checks that all their nonces, N1, . . . , Nk, are present in the Bloom filter that the CD submits
for that interval. Provided these conditions are satisfied, the auditor computes an estimate of
the number of requests seen by the content distributor via I(~b) = ln(1−w(~b)/m)

s ln(1−1/m) . The requirement

that w(~b) ≤ 2m/3 is a technical constraint necessary to guarantee that the estimate I(~b) is
sufficiently accurate (see Theorem 1).

For small content distributors, this scheme is very efficient. Using the ratio m/n = 8 men-
tioned above, the content distributor must send the auditor about 1 byte per join. So, for
example, a content distributor that receives 20 requests each day would only have to send a

2The hash functions need not be cryptographically secure. They are just used to map the universe of objects
down to integers.
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A CD

-¾r coin flipping protocol
N N

~b ← Insert(~b,N)

¾ -normal content distribution protocol

Figure 1: The cumulative request counting version of the Bloom-filter protocol. The content
distributor is denoted by CD. The client, A, must be anonymous, and N is the result of
executing a coin flipping protocol for r coins.

140 byte message to the auditor each week. Thus this scheme is completely feasible for small
to medium content distributors. Even a relatively large content distributor with around 150
requests per day would only have to send a 1K weekly message to the auditor. In the context of
Internet radio broadcasters, these overheads are very small since the average audio stream takes
at least 2K/s.

3.1 Analysis

The quantity I(~b) is an accurate estimate of the size of the content distributor’s audience. The
following theorem implies that if we use I(~b) as an estimate of the number of requests received
by the content distributor then, with extremely high probability, the actual number of requests
will differ from our estimate by at most α

√
m for a small value of α.

Theorem 1 Fix nmax < m ln s
s and W < (1 − 1

s )m. Let X be a random variable representing
the set of nonces received by the content distributor. We model X as taking on values at random
from the set {{x1, . . . , xn}|xi ∈ Z/2rZ, 0 ≤ n < nmax}. Let ~B[X] denote the Bloom filter
representation of X, and w(X) = w( ~B[X]). Then

Pr[||X| − I( ~B[X])| ≥ α
√

m | w(X) = W ] = O

(√
m exp

(−(α− 1)2

2

))
.

Proof. By Bayes’ Theorem,

Pr[|X| = n | w(X) = W ] =
Pr[w(X) = W | |X| = n] Pr[|X| = n]∑M
i=0 Pr[w(X) = W | |X| = i] Pr[|X| = i]

.

Since we are estimating |X| from w(X), we assume that |X| is uniformly distributed. 3 Letting
K =

∑M
i=0 Pr[w(X) = W | |X| = i] and simplifying gives

Pr[|X| = n | w(X) = W ] =
Pr[w(X) = W | |X| = n]

K
.

Except for the factor of K, the LHS of this equation is just the well-known occupancy distribution
derived from tossing n balls into m bins. Let µ(i) = E[w(X) | |X| = i] = (1 − (1 − 1

m)is)m.
When µ(i) < (1− 1

s )m (or, equivalently, when i < m ln s
s ), then dµ

di > 1.

3This is a common but controversial assumption in Bayesian analysis. The controversy arises because the
validity of the analysis depends on this assumption, but the assumption cannot be verified statistically. For the
purposes of bounding the tail probabilities, the uniform distribution is a relatively pessimistic choice, hence we
believe it is a safe one. A similar situation arises in Section 4.
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Figure 2: The accuracy of using I(x) to estimate the number of insertions performed on a Bloom
filter. Note that the confidence intervals have been normalized to

√
m. Since our protocol

requires that content distributors submit Bloom filters ~b with w(~b) ≤ 2m
3 , we can conclude that

with 99.9% confidence, the actual number of requests received by the content distributor differs
from I(~b) by at most 4

√
m

5 .

By Kamath, Motwami, Palem, and Spirakis’ Occupancy Bound [18],

Pr[|w(X)− µ(|X|)| ≥ θµ(|X|)] ≤ 2 exp
(

θ2µ(|X|)2(m− 1/2)
m2 − µ(|X|)2

)
.

By combining this bound with the Bayesian equation above and unenlightening algebraic ma-
nipulation, one can derive that

Pr[||X| − I(W )| ≥ α
√

m | w(X) = W ] ≤ 4
√

m

K

∞∑

i=α

exp
(−(i− 1)2

2

)

= O

(√
m exp

(−(α− 1)2

2

))

The only tricky part of the derivation is to use that |i−I(W )| ≤ |W −µ(i)|, which holds because
dµ
di > 1. 2

In practice, I(~b) is a much better estimate of the number of requests than this theorem
predicts. Figure 2 shows the width of the 99.9% confidence interval for several choices of m. As
the figure shows, as long as w(~b) ≤ 2m/3 as required by our protocol, then with 99.9% confidence,
|I(~b) − |X|| ≤ 4

√
m

5 . So for example, using a Bloom filter ~b with m = 640, if w(~b) = 320, then
with 99.9% confidence, the actual number of insertions performed on the filter is between 80
and 100.
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Figure 3: The probability that a content distributor can fool the auditor, assuming m = 1024,
s = 5, and the content distributor is allowed to report Bloom filters with weight at most
512, which corresponds to 128 requests. The top two curves are provable bounds: a content
distributor cannot fool the auditor with probability better than these curves indicate. The
bottom two curves are empirical bounds: based on computer simulations, we believe that a
content distributor cannot fool the auditor with greater probability than these curves indicate.
So for example, if a content distributor receives 1.3∗128 requests, and the auditor sent 8 auditing
requests, then the content distributor’s chances of successfully convincing the auditor that he
only received 128 requests is less than 10%.

In general, the content distributor can attempt to cheat during an auditing period by re-
porting a Bloom filter ~b′ < ~b, where ~b is the correct Bloom filter containing all requests for the
auditing period. The auditor detects this cheating if there exist i and j such that ~b′[hi(Nj)] = 0.
The following Proposition describes the content distributor’s optimal strategy and bounds his
chances of success.

Proposition 2 Suppose the content distributor receives n requests, but wishes to report only
L < n of those requests. Let {J1, . . . , Jn} be the set of nonces generated by servicing the requests,
and ~b be the Bloom filter generated from {J1, . . . , Jn}. Then the content distributor’s optimal
strategy is to report a Bloom filter ~b′ containing the largest subset S ⊆ {J1, . . . , Jn} such that
I(w(~b′)) ≤ L. If w(~b) − w(~b′) = D and the auditor sent k requests to the content distributor,
then

Pr[content distributor succeeds] ≤
(
n−k
D/s

)
(

n
D/s

)

Proof. The content distributor gains nothing by reporting a Bloom filter ~b′ 6≤ ~b, since it does
not decrease his chances of being caught. If there exist i, j such that ~b′[hi(Jj) mod m] = 0, then
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setting ~b′[hi′(Jj) mod m] = 1 for i′ 6= i does not decrease the content distributor’s chances of
being caught. Hence the content distributor’s optimal strategy is to report a Bloom filter ~b′
containing some subset S ⊆ {J1, . . . , Jn}.

To decrease the weight of the Bloom filter by D, one must remove at least D/s items, since
each item can decrease the weight of the filter by at most s. Since the content distributor cannot
distinguish the auditor’s requests, his best strategy is to select the largest S such that w( ~B[S]) is
below the allowed threshold. We may assume that for any Jj ∈ {J1, . . . , Jn} \S, there exists an
i such that hi(Jj mod m) = 0 since otherwise the content distributor could add Jj to S without
affecting the weight of ~B[S]. So cheating successfully requires selecting (at least) D/s items
from {J1, . . . , Jn} without selecting one of the k requests sent by the auditor. The probability

of doing this is
(n−k

D/s)
( n

D/s)
.

2

Again, the bounds in this proposition are not as tight as possible. In practice, the content
distributor will have to omit considerably more than D/s requests in order to reduce the weight of
the reported Bloom filter below the allowed threshold. To get a better idea what the real chances
of cheating successfully are, we wrote a computer program to simulate a content distributor
trying to cheat by finding the optimal subset S described in the above proposition. Based on
our experiments, the content distributor has to remove at least D/2 items from {J1, . . . , Jn}
in order to decrease the weight of his Bloom filter by D. Figure 3 compares the probability
of successfully cheating estimated from the above proposition and the probability of success
derived from our experiments. As the graph shows, the actual probability of cheating is much
lower than the proposition indicates.

This scheme preserves audience anonymity. The content distributor and client use a coin
flipping protocol to agree on the nonce to be placed in the Bloom filter. Since this nonce is
generated randomly, it cannot reveal anything about the identity of the client. This strong
guarantee of privacy has a downside: a malicious client can send many requests to the content
distributor, artificially inflating the audience size. Since this scheme provides total listener
anonymity, the content distributor cannot identify the attacker. Also, a content distributor and
a group of cooperative clients can agree to always generate the same nonce, hence all the clients
would appear to be just one client, deflating the content distributor’s audience.

We have described this scheme in terms of request-counting, but it can also be used to count
current audience size. Suppose the auditor wants to know the current audience size at each
minute. Then the content distributor simply inserts the IDs for all its active clients into a
Bloom filter every minute and sends this off to the auditor. To audit, the auditor anonymously
requests content from the content distributor and verifies that it is counted among the active
streams. Although the reporting overheads are obviously increased in such a scheme, they are
still quite low. For example, an Internet radio station with 20 listeners will have to send the
auditor about 20 bytes of data every minute, which is quite modest. The above accuracy and
security analysis apply directly to this scheme, too.

Finally, this scheme can be further improved by using compressed Bloom filters [21] to reduce
the false positive rate without increasing the size of messages sent to the auditor.
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4 Estimating Audience Size with Constant Overhead

In the following protocol, the auditor is able to infer the audience size from a constant number of
bits that are associated with the (encrypted) content. The protocol offers security against both
deflation and inflation of audience size. It is most naturally applicable to the distribution of
fairly static content, for example, a web site that provides software or movies in encrypted form
available for download and decryption with payment. When used with real-time content, the
content distributor must be using the network as a broadcast channel in order for the auditor
to be assured the measurements are accurate. The drawback of the protocol is that it requires
a keying infrastructure. As in Section 3, the basic protocol is essentially a metering scheme in
that it counts hits (or, joins). In Section 4.2, we discuss extensions to the basic protocol that
allow demographic information to be extracted from the content and the current audience size
(i.e., not just the cumulative audience) to be estimated.

In this protocol, each client stores a set of encryption keys issued by a trusted party (TP).
In the initial phase of the protocol, the TP sends all the keys to the content distributor. When
a client requests the content, the TP gives some subset of the keys to the client and sends the
ID number of each of the client’s keys to the CD. To distribute content to the current set of
clients, the CD forms the intersection of the clients’ key sets, T , and chooses a key from T for
encrypting the content. Because the TP assigns keys to clients probabilistically, the auditor
(who may be the same as the TP) when requesting the content anonymously4 (e.g. by visiting
the distributor’s web site), can infer the audience size from the encryption key in use.

The TP assigns keys to clients as follows. First, the entire set of keys is partitioned into t
sets, S1, . . . , St. Each client receives any particular key with a fixed, independent probability.
For keys in the same set Si, this probability is the same. By choosing the sets {Si}t

i=1 to be of
decreasing size (as i increases), but with increasing associated probabilities, the TP can control
the proportion of keys in T that are in any Si given the audience size. More precisely, if the
audience is small, T is dominated by keys from S1, but as the audience grows, the proportion
of keys in T that are in S1 will be far less than the proportion that are in Si for i > 1. Hence,
because the content distributor doesn’t have any a priori knowledge of the composition of the sets
{Si}i, the distributor is unable to distinguish between the keys in T and so the choice of k ∈ T is
a reflection of the distribution of T , and by inference, the audience size. Figure 4 demonstrates
how T , may change over time. For illustrative purposes, keys with higher probabilities are
indicated by larger ovals.

The following makes the protocol more precise.

Basic Protocol. This protocol takes as input a positive integer m representing the number of
keys in the system, a positive integer t, and positive integers s1, . . . , st such that s1+s2+. . .+st =
m. The keys are partitioned into t sets, S1, . . . , St, such that for each i, |Si| = si, where
s1 > s2 > . . . > st. For each i = 1, . . . , t and any kj ∈ Si, there is a probability pi that
the TP will assign key kj ∈ Si to any given client (keys are assigned independently), where
p1 < p2 < ... < pt. Numbers ε1, ε2, 0 < ε1, ε2 < 1, are also input to provide a gauge of the
accuracy of the audience measurements. These parameters imply an upper bound, nmax, on

4Receiving the content anonymously also allows the auditor to determine that the content distributor isn’t
distributing keys to clients (to maintain the appearance of a small audience) or abusing the protocol in some
other way. For applications in which the surreptitious distribution of keys to clients by the content distributor is
a real concern, a simplified version of the analysis in Section 3 can be performed to calculate the frequency with
which the auditor should request the content.
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K1 K1

K2
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K3

K2
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Figure 4: The black ovals represent keys in the set T when there are 1, 2 and 3 clients. That is,
Ki denotes client i’s key set, for i = 1, 2, 3. The larger ovals correspond to keys that are more
likely to be assigned to any given client. As the number of clients grows the proportion of large
ovals in T increases. In this way, the key that’s selected from T reflects the audience size.

the number of joins that can be accurately measured by the system. The variable n is used to
denote the actual number of joins. The protocol consists of the following steps:

1. The TP randomly generates m keys, k1, . . . , km, and sends them to the content distributor.

2. Upon contacting the content distributor, a client, ui, receives a set of keysKi ⊆ {k1, . . . , km}
from the TP. For j = 1, . . . ,m, kj ∈ Ki with probability pr if kj ∈ Sr. The TP sends the
content distributor the ID numbers of the client’s keys5.

3. To distribute content to clients uj1 , . . . , ujr , the content distributor chooses a key k ∈ T =
Kj1 ∩ . . . ∩ Kjr and encrypts the content (or perhaps, a key that is used to encrypt the
content) with k. A fresh key should be chosen regularly.(The frequency with which this is
done provides a way to tune the accuracy of the protocol.)

4. Periodically, the auditor requests content and notes the key, k, that the content distributor
is using in Step 3. There exists i ∈ {1, . . . , t} such that k ∈ Si. The auditor calculates the
distribution of the random variable that measures the proportion of keys in T that are in Si

as a function of n, ( |T∩Si|
|T | |n), to within a confidence level of 1− ε1. Using this distribution,

the auditor determines a range [n1, n2] such that for each n ∈ [n1, n2], P (k ∈ Si|n) ≥ ε2,
and estimates6 the audience size as being in this range.

– To increase the likelihood of inferring audience size correctly, the auditor can monitor
the content through several key changes. In addition, accuracy can be tuned by
requiring the CD to choose new keys more frequently (e.g. with each new song).

5We suggest that the TP send the keys rather than the client, so that the client cannot cause the audience
size to appear larger than it is by sending only a subset of their keys to the content distributor.

6Note that the probability that directly infers audience size is P (n = x|k ∈ Si). Since the distribution
on n is unknown we cannot calculate this probability precisely. However, provided some information on the
distribution of n is available, this probability can be derived from the one we know by using: P (n = x|k ∈ Si) =
P (k∈Si|n=x)P (n=x)

P (k∈Si)
≥ P (k ∈ Si|n = x)P (n = x). For example, if P (n = x) ≥ α for all x, then we have an upper

bound: P (n = x|k ∈ Si) ≥ αP (k ∈ Si|n = x), and if n is uniformly distributed (as is assumed in Section 3 to
achieve analysis benefits that don’t seem to occur for this protocol), we have an equality: P (n = x|k ∈ Si) =
ciP (k ∈ Si|n = x) where ci = Σnmax

y=1 P (k ∈ Si|n = y). Hence, we believe {P (k ∈ Si|n = x)}x is sufficient to infer
the value of n as being in [n1, n2].
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– If the auditor has contacted the content distributor previously and received a different
set of keys, the auditor should check that k is also in that key set. Alternatively,
the auditor can request the content as several different clients and perform the same
checks. If any of these checks fail, the content distributor is not following the protocol.

This protocol relies on the content distributor’s inability to distinguish between the keys in
the intersection, T . The content distributor can gain such an ability in the following ways. First,
a key that is not known to any of a large set of clients is less likely to be in St than a key in
T . However, provided the distributor follows the protocol and encrypts the content so that all
of the audience can decrypt it, the distributor is unable to make use of this information. The
other information the content distributor learns about the keys comes from bills (e.g. licensing
royalties). For example, if the distributor is charged less when using key k than when using key
k′, the distributor knows the index jk such that k ∈ Sjk

is less than the index jk′ such that
k′ ∈ Sj′k

. To remedy this, we suggest that the system be refreshed with every bill (e.g. once a
month).

There is also the possibility that the content distributor attempts to cheat in a similar way
as in our first protocol, namely by removing some users’ key sets from the calculation of the
intersection, T , in order to get a larger set from which to draw the encryption key. We argue
that it is unlikely this attack will be successful. First, cheating in this way can have the effect of
preventing some users from accessing the content (which should generate complaints). Second,
it is difficult to guarantee that a small audience will be inferred by the auditor because the key
allocation algorithm is probabilistic. That is, if the content distributor chooses a key that is not
known to several of the clients then there is still some probability that this key is in Si for large
i, in which case a large audience will be inferred. To guarantee that a small audience will be
inferred, the content distributor has to use a key that’s not known to several clients, in which
case the distributor may indeed only be able to reach a small audience.

Finally, the content distributor can potentially benefit from collusion with clients or other
content distributors. If the TP is using the same global set to allocate keys to clients of different
content distributors (which is a desirable practice because it can allow clients to “surf” multi-
ple distributors without needing to repeat the initialization phase) then the distributors (and
users) may be able to distinguish between keys that they wouldn’t have been able to otherwise.
However, as mentioned earlier, this may be only of limited value because a key that causes a
small audience to be inferred does so because it is only likely to be stored by a small number of
clients.

4.1 Analysis

In this section we develop equations that allow the auditor to execute the protocol. First, we find
an accurate approximation to the distribution of ( |T∩Si|

|T | |n). Let βx,i = s1p1
x + . . .+ si−1pi−1

x +
si+1pi+1

x + . . . + stpt
x.

Lemma 3 Let 0 < δ < 1. For i = 1, . . . , t and n = x, P (k ∈ Si|n = x) is at least as large as
(1−δ)sipi

x

(1+δ)βx,i+(1−δ)sipi
x and at most as large as (1+δ)sipi

x

(1−δ)βx,i+(1+δ)sipi
x with probability at least 1 − ε1,

when ( eδ

(1+δ)1+δ )stp1
nmax ≤ 1−(1−ε1)1/t

2 and e−δ2stp1
nmax/2 ≤ 1−(1−ε1)1/t

2 .

Proof. For i = 1, . . . , t, when the number of clients is x, the random variable |T∩Si| is binomially
distributed with size si and probability pi

x. Hence, the expected value of |T∩Si| is sip
x
i . Applying
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Chernoff bounds (see, for example, [22]), it follows that, |T ∩Si| ∈ [(1− δ)sip
x
i , (1 + δ)sip

x
i ] with

probability at least (1−ε1)1/t when both ( eδ

(1+δ)1+δ )sipi
nmax ≤ ( eδ

(1+δ)1+δ )stp1
nmax ≤ 1−(1−ε1)1/t

2 and

e−δ2sipi
nmax ≤ e−δ2stp1

nmax/2 ≤ 1−(1−ε1)1/t

2 . Hence, P (k ∈ Si|n = x) = |T∩Si|
|T | = |T∩Si|

|T∩S1|+...+|T∩St|
is in the interval stated in the lemma with probability at least (1− 21−(1−ε1)1/t

2 )t = 1− ε1. 2

From the above lemma, it follows that the auditor needs to find x values such that
(1−δ)sipi

x

(1+δ)βx,i+(1−δ)sipi
x ≥ ε2 to complete the protocol. In addition, nmax, si and pi must be chosen

to satisfy Lemma 3, for example, by using the bounds in the following corollary.

Corollary 4 To satisfy step 4 of the basic protocol it suffices (but isn’t generally necessary) to

choose nmax ≤ ln(
c(ε1,δ,t)

st
)

ln p1
and si ≥ ci(ε1,δ)

pi
nmax for all i, where c(ε1, δ, t) and ci(ε1, δ) are defined

below. Provided these inequalities are met, the expected number of keys that a client must store
is at least Σt

i=1
ci(ε,δ)

pnmax−1
i

.

Proof. The constant ci(ε1, δ) in the upper bound on si comes from solving the following two
inequalities used in the proof of Lemma 3: ( eδ

(1+δ)1+δ )sipi
nmax ≤ 1−(1−ε1)1/t

2 and e−δ2sipi
nmax/2 ≤

1−(1−ε1)1/t

2 . It follows that ci(ε1, δ) = max{2 ln(
1−(1−ε1)1/t

2
)

−δ2 ,
ln(

1−(1−ε1)1/t

2
)

ln ( eδ

(1+δ)1+δ )
}.

The bound on nmax follows similarly with c(ε1, δ, t) = min{2 ln(
1−(1−ε1)1/t

2
)

−δ2 ,
ln(

1−(1−ε1)1/t

2
)

ln ( eδ

(1+δ)1+δ )
}.

The lower bound on the expected number of keys per client follows by substituting the lower
bound for si into the quantity, Σt

i=1pisi. 2

For illustrative purposes7, we conclude this section with a small example.

Single Threshold Example. The following example shows how the basic protocol can be
used to determine that a threshold number of clients has been achieved. Let s1 = 37000,
p1 = .6, s2 = 370, p2 = 1 and nmax = 13. Because |T ∩ S2| = 370 with probability 1, we
need only find a confidence interval for |T ∩ S1| and this will imply confidence intervals for
|T ∩ S1|/|T | and |T ∩ S2|/|T |. Setting δ = .2, by the proof of Lemma 3 we need the following
inequality to hold: (.98)s1p1

13
< ε1

2 . Solving for ε1 yields, ε1 ≥ .75. If we choose ε2 = .75,
then with at least .75 confidence, it follows by solving the inequality, (1−δ)37000(.6)x

(1−δ)37000(.6)x+370 ≥ .75
for x, that P (k ∈ S1|n ≤ 6) ≥ .75. Similarly, by solving, 370

(1+δ)37000(.6)x+370 ≥ .75 we get,
P (k ∈ S2|n ≥ 12) ≥ .75. Hence, if k ∈ S1 the auditor returns the interval [1, 6] for n and if
k ∈ S2 the interval n ≥ 12 is returned. This is depicted in Figure 5.8

In this example, we expect a client to store 22, 570 keys. If the keys are each 64 bits long,
this represents .17 megabytes of keying material. While this is significant, it is a fraction of
the space required by most media players (for example, it’s about .09 of the download size of
WinAmp.com’s “full” player). Viewed differently, after listening to streaming music at a data

7In general, it is unwise to choose p2 = 1 and t = 2 because the content distributor then knows that any key,
k, that’s not stored by all the clients, is in S1 with probability 1. However, even in this example it’s arguable that
using key k yields a successful attack, since we expect k to only be stored by around 7 clients (.6nmax) which is
already very close to the 6 client audience that the auditor will infer from the usage of k.

8Note that the confidence intervals hold up to n = 13 only.
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Est. of 
P(k∈S1| n = x)

Est. of 
P(k∈S2| n = x)

Estimated probability of choosing 
k∈Si given n = x, for i = 1,2.

With probability >.77, P(k∈Si| n = x) 
is within the dashed lines, for i = 1,2.

With probability >.77, 
P(k∈S1| n = 20) is in this 

range

y = .75

Figure 5: In the left-hand side of the figure we graph, px
i si

px
1s1+px

2s2
for i = 1, 2 (where p1 = .6,

p2 = 1, s1 = 37000, s2 = 370) as estimates for P (k ∈ S1|n = x) and P (k ∈ S2|n = x).
P (k ∈ S1|n = x) and P (k ∈ S2|n = x) are within the distance indicated by the dashed lines of
their respective estimates with probability at least .75.

rate of 28.8 kilobits per second for less than 20 minutes, the keying material is less than .0425
of the audio data that’s been downloaded.

Since a client will typically have more than half of the 37, 370 keys in this example, the TP
can tell the content distributor the keys the client doesn’t have more efficiently than listing the
keys the client does have, in step 2 of the protocol. Since the key IDs are less than 16 bits
long, we expect this step to require the transmission of at most 29 kilobytes of data. Using
compression, this can probably be reduced to only 10 kilobytes. Again, this is only necessary
when the client first requests the content.

4.2 Extensions

Multiple Content Distributors. The basic protocol is easily modified to allow the trusted
party to use a single set of keys for multiple content distributors. In step 2, each user sends keys
that are computed as the output of a one-way function applied to each of the keys received from
the TP concatenated with the CD’s ID. Because the CDs have distinct IDs it is computationally
infeasible for them to determine which of their received keys are the same.

Privacy and Demographics. Note that this protocol is not completely privacy preserving
because the auditor learns something about the clients, namely, that they have key k. However,
if there is sufficient separation between the auditor and the TP it will be difficult for the auditor
to make use of this information. In addition, we note that it may be possible to use this aspect of
the scheme to embed demographic information. For example, although men and women should
with high probability receive the same number of keys in Si, the particular keys they tend to
receive may be partly a function of their sex. Hence, the auditor may be able to infer the

15



predominant sex of the audience from the content distributor’s choice of encryption key in Si.

Measuring the Current Audience. The protocol described above is best suited to estimate
cumulative audience size, for example, the number of hits received by a web site over a certain
period of time. In some settings, this may be the only possible measure of audience size. For
example, in multicast applications, the content distributor typically only is informed of new
additions to the multicast group and is unlikely to know when a member leaves [4]. Hence, by
observing the content distributor’s behavior, or by querying directly, it may only be possible to
learn the cumulative audience. In this case, behavioral patterns may be used to infer current
audience size from cumulative data.

It may also be possible to modify the basic protocol to measure audience size directly. The
key idea is that if the auditor can observe the content for long enough9 to gain an accurate
estimate of the entire contents of T , then the current audience may be inferred. The entire
contents of T are necessary because the content distributor gains some ability to distinguish
keys from every new client. For example, if k is stored by several clients but k′ is only known
to a few, then k′ may be a cheaper key for the content distributor to use because it may imply
a smaller audience in the basic protocol (k′ ∈ Si, k ∈ Sj , where i < j). Hence, if the audience
shrinks and k′ ends up being a key all the current clients know, the content distributor may seek
to mislead the auditor by only using k′. However, if the content distributor is required to change
keys frequently (e.g., a different key for every few songs) and the auditor listens long enough
to determine that k′ is the only key in use, an alarm will be raised as the probability that the
content distributor would be left with only k′ at some point is very low. One problem with this
is that a key that is known to clients who are no longer in the audience may be selected as the
encryption key.

5 Open Problems

We’ve introduced the first metering protocols that provide security against deflation attempts
by the content distributor. The protocols assume an anonymous network and as this is a strong
assumption it would be interesting to explore what other assumptions can yield deflation security.

In addition, each of our protocols requires some a priori knowledge of the maximum audience
size. Although this seems like a reasonable assumption for the applications we consider, it would
be useful to design a scheme that can efficiently adapt to unanticipated surges in audience size.
Ideally, such a protocol would provide content access to only the current set of clients while
preserving privacy and enabling efficient auditing.

Finally, inflation-resistant schemes can use secret sharing to produce short proofs of the size
of a content distributors audience, but our protocols require either long proofs or large keying
infrastructure. Is it possible to construct a deflation-secure metering scheme that uses short
proofs with minimal infrastructure?
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9This requirement may be easy to meet because the auditor may need to observe the content for a long time
in order to preserve anonymity.
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