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Multirecipient Encryption Schemes: How
to Save on Bandwidth and Computation
Without Sacrificing Security

Mihir Bellare, Alexandra Boldyreva, Member, IEEE, Kaoru Kurosawa, Member, IEEE, and Jessica Staddon

Abstract—This paper proposes several new schemes which allow
a sender to send encrypted messages to multiple recipients more
efficiently (in terms of bandwidth and computation) than by using
a standard encryption scheme. Most of the proposed schemes ex-
plore a new natural technique called randomness reuse. In order
to analyze security of our constructions, we introduce a new no-
tion of multirecipient encryption schemes (MRESs) and provide
definitions of security for them. We finally show a way to avoid ad
hoc analyses by providing a general test that can be applied to a
standard encryption scheme to determine whether the associated
randomness reusing MRES is secure. The results and applications
cover both asymmetric and symmetric encryption.

Index Terms—Cryptography, encryption, provable security,
randomness.

1. INTRODUCTION

HIS paper is an extension of [5], [27]. Some extra results
are presented in [4].

A. Multirecipient Encryption Schemes (MRESs)

Consider a common scenario when a sender needs to encrypt
messages for several recipients. A traditional approach for this
task is for a sender to encrypt messages independently using an
encryption algorithm of some standard encryption scheme. De-
pending on the application, the ciphertexts can be sent to the re-
ceivers together via broadcast or separately, possibly over some
period of time.

In this paper, we propose and analyze the ways to achieve
computational and bandwidth savings possible in this scenario
due to batching. Since the setting of standard encryption
does not allow to exploit batching (because encryption for
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each receiver is done independently), we first define a new
setting of multirecipient encryption as follows. (Let us restrict
our attention for the moment to asymmetric-key setting. We
turn to symmetric-key setting later.) There are n receivers,
numbered 1, ..., n. Each receiver ¢ has generated for itself a
secret decryption key sk; and corresponding public encryption
key pk;. The sender now applies a multirecipient encryption
algorithm &€ to pky,...,pk, and messages Mi,..., M, to
obtain ciphertexts C1, . . ., C,,. Each receiver ¢ can apply to sk;
and C; a decryption algorithm that recovers M;. We refer to the
primitive enabling this type of encryption as a multirecipient
encryption scheme (MRES). We note that its syntax differs
from that of a standard encryption scheme only in that the en-
cryption algorithm of the latter is replaced by a multirecipient
encryption algorithm. Key generation and decryption are just
like in a standard scheme. We will also consider a scenario
when an MRES is used to encrypt a single message for all
receivers. It can often arise in broadcast applications. We call
this subclass of MRESs single-message MRESs or SM-MRESs.

A common use of a standard encryption we mentioned above
can be described by a naive MRES as follows. For each ¢, let
C; be the result of applying the encryption algorithm £ of a
standard scheme to pk;, M;. However, it is possible to exploit
batching and construct more efficient MRESs. To exemplify
this, we sketch the constructions of several MRESs we pro-
pose and discuss the efficiency savings they permit. Further,
we discuss the security of proposed schemes. Since most of
the schemes we present explore an interesting and natural tech-
nique, which we call randomness reuse; accordingly, we start
with the description of this idea and the corresponding subclass
of MRESs that exploit randomness reuse.

B. Randomness Reusing MRESs

We propose to consider MRESs constructed from the stan-
dard encryption schemes by applying what we call randomness
reuse. Namely, we suggest, that reusing random coins when
computing ciphertexts for different receivers may often provide
computational and bandwidth savings. Consider a multirecip-
ient encryption algorithm that works as follows: given mes-
sages M, ..., M, and keys pk1,...,pkn,, it picks at random
coins r for a single application of the encryption algorithm £
of an underlying standard encryption scheme, and then outputs
(C1,...,Cy), where C; = &, (M;,r) is the encryption of
message M; under key pk; and coins r (1 < i < n). The
corresponding MRES is called the randomness reusing MRES
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(RR-MREYS) associated to the underlying standard encryption
scheme.

C. Efficient MRESs

ELGAMAL AND CRAMER-SHOUP. Suppose receiver ¢ has se-
cret key z; € Z, and public key g®¢, operations being in some
global, fixed group of order g. The naive ElGamal-based MRES
is the following: Pick 1, . .., 7, independently at random from
Z, and let C; = (g™, g""™ - M;) for 1 < i < n. Instead,
we suggest that one pick just one  at random from 7, and set
Ci=(g",9%" - M;) for 1 <i < n.In other words we propose
the ElGamal-based RR-MRES.

The associated RR-MRES is of interest because compared
to the naive one it permits reductions in both computation and
broadcast ciphertext size. First, it results in bandwidth reduc-
tion in the case that the ciphertexts are being broadcast or mul-
ticast by the sender, since in that case the transmission would
be C = (¢9",9**" - My,...,g"*" - M,), which is about half
as many bits as required to transmit the ciphertexts computed
by the naive method. Second, the suggested scheme (approxi-
mately) halves the computational cost (number of exponentia-
tions) for encryption as compared to the naive method. We also
suggest that the RR-MRES derived in a similar way from the
Cramer—Shoup encryption scheme [16] permits similar compu-
tational savings.

CBC. We also consider the symmetric setting. We consider
popular CBC encryption with random initial vector (IV), based
on a given block cipher. The IV is the randomness underlying
the encryption. Randomness reuse is interesting in this context
because it means that CBC encrypted ciphertexts to different
receivers can use the same IV, thereby yielding savings in band-
width for broadcast. If the message is one block long then the
CBC-based RR-MRES allows to reduce the length of the broad-
cast ciphertext by 50%.

HYBRID ENCRYPTION. In practice, asymmetric and sym-
metric encryption schemes are usually used together in the
following “hybrid” manner. A sender uses an asymmetric
encryption scheme to encrypt a random ‘“‘session” symmetric
key under the receiver’s public key and then uses a symmetric
encryption scheme to encrypt a message under the symmetric
key.

Now consider a scenario when a sender uses a hybrid en-
cryption scheme to encrypt a single message under public keys
of several recipients, and send, possibly via broadcast, the re-
sulting ciphertexts to the receivers. A naive SM-MRES would
ask a sender to use fresh random coins each time it encrypts a
message. This includes picking a new symmetric key for each
recipient. However, we propose a sender to use the same session
symmetric key for all receivers. This is attractive since when
a single symmetric key is used the symmetric ciphertext is the
same for all receivers and can be sent (broadcast) only once, thus
providing bandwidth savings. Moreover, the random coins can
possibly be reused when encrypting the symmetric key thereby
providing additional savings.

We note that security results for the above schemes do not
follow from any previously known results. We need to specifi-
cally address security of the above schemes and MRESs in gen-
eral.
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D. Security Notions for MRESs

The preceding examples show that there are MRESs that are
more efficient than the naive one. But are they secure? The first
step toward answering this important question is to ask what “se-
cure” means in this context. That is, we need appropriate models
and definitions of security, in particular extensions of standard
definitions such as IND-CPA and IND-CCA to the MRES con-
text.

We envision a very powerful adversary. As usually, we con-
sider the standard chosen-plaintext (resp., chosen-ciphertext) at-
tacks. In addition, we take into account a scenario where the ad-
versary is one of the recipients, enabling it to mount what we
call insider attacks. As a legitimate recipient it could decrypt a
received ciphertext, and might then obtain the coins underlying
that ciphertext. This is not a concern if, as in the multiuser set-
ting of [3], [1], encryptions to other recipients use independent
coins, but ciphertexts created by a multirecipient encryption al-
gorithm might be based on related coins. So in the latter case,
possession of the coins underlying a ciphertext sent to one recip-
ient might enable the adversary to compromise the security of
ciphertexts sent to other, legitimate recipients. Our model takes
this into account by allowing the adversary to corrupt some frac-
tion of the users and thereby come into possession of their de-
cryption keys.

A stronger form of insider attack that one could consider
is to allow the adversary to specify the (public) encryption
keys of the corrupted recipients. (In such a rogue-key attack, it
would register public keys created as a function of public keys
of other, legitimate users or would register “invalid” public
keys that cannot normally be output by the key-generation
algorithm.) Such attacks can be extremely damaging, as we
illustrate in Section IV with a rogue-key attack that breaks the
above-mentioned ElGamal-based MRES. It is important to be
aware of such attacks, but it is for such reasons that certification
authorities require (or should require in certain scenarios) that
a user registering a public encryption key prove knowledge of
the corresponding secret decryption key and “validity” of the
public key. This can be done by the user proving knowledge
of the random coins used in the key-generation algorithm. (In
that case, our attack fails.) Accordingly, our model does allow
rogue-key attacks, but does not give the adversary complete
freedom in specifying encryption keys of corrupted recipients.
Rather, we require that it may do so only if it also provides
coins that are used by the key-generation algorithm to output a
pair of a public and secret keys.

SECURITY OF SINGLE-MESSAGE MRESS. We also consider a
definition of security for SM-MRESs, which is a special case of
a more general security definition for MRESs. The difference is
that in the case of SM-MRESs, insider attacks are not a threat
since all users receive a single message. Accordingly, the adver-
sary is not allowed to corrupt recipients.

E. Reproducibility Theorem for Randomness Reusing MRESs

Many RR-MRESs offer performance benefits, but not all are
secure. (We illustrate the latter in Section V by showing how
Hastad’s attacks [24] can be exploited to break RR-MRESs
based on RSA-OAEP [10].) We are interested in determining
which RR-MRESs are secure MRESs. Direct case-by-case
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analysis of different schemes is possible but would be pro-
hibitive. Instead, we introduce a paradigm based on which one
can determine whether a standard encryption scheme permits
secure randomness reuse (meaning the associated RR-MRES
is a secure MRES) based on existing security results about the
underlying (base) standard encryption scheme. It takes two
parts: definition of a property of encryption schemes called re-
producibility, and a theorem, called the reproducibility theorem.
The latter says that if a standard encryption scheme is repro-
ducible and is IND-CPA (resp., IND-CCA) in the standard,
single-receiver setting, then the corresponding RR-MRES is
also IND-CPA (resp., IND-CCA) with respect to our notions of
security for such schemes. It is usually easy to check whether a
given encryption scheme is reproducible, so numerous applica-
tions follow. The approach and result hold for both asymmetric
and symmetric encryption.

Reproducibility itself is quite simply explained. Considering
first the case where the standard encryption scheme is asym-
metric, let pky, pks be public encryption keys, and let C; =
Epky (M7, 7) be a ciphertext of a message M, created under
key pki based on random string r. We say that the encryption
scheme is reproducible if, given pk1 , pks, C1, any message M,
and the secret decryption key sk2 corresponding to pks, there
is a polynomial time reproduction algorithm that returns the ci-
phertext Cy = &Epi, (Mo, ). The symmetric case is analogous
except that the reproduction algorithm is denied the first encryp-
tion key because this is also the decryption key.

F. Security of the Proposed MRESs

We now discuss security of the MRESs we discussed before.
ELGAMAL AND CRAMER-SHOUP. We show that the base El-
Gamal and Cramer—Shoup schemes are both reproducible. Our
reproducibility theorem together with known results stating
that under the decision Diffie—Hellman (DDH) assumption
ElGamal is IND-CPA secure Cramer—Shoup is IND-CCA
secure [16], imply that under the same assumption the ElGamal
RR-MRES is IND-CPA secure and the Cramer—Shoup based
one is IND-CCA secure.

In [4], we extend these results by providing reductions with
improved concrete security. These improvements do not use
the reproducibility theorem, instead directly exploiting the
reproducibility property of the base schemes and, as in [3],
using self-reducibility properties of the DDH problem [34],
[29], [33]. There we also show that the RR-MRES based on
DHIES scheme proposed in [2] and adopted by draft stan-
dards ANSI X9.63EC and IEEE P1363a is IND-CCA under
the assumptions used to establish that DHIES is IND-CCA,
and permits badwidth and computational savings similarly to
ElGamal and Cramer—Shoup.

CBC ENCRYPTION. We show that the base CBC encryption
scheme is reproducible. Since it is known to be IND-CPA as-
suming the block cipher is a pseudorandom permutation [6],
the reproducibility theorem implies that the randomness reusing
CBC MRES is IND-CPA under the same assumption.

HYBRID ENCRYPTION. It is well known that if the asymmetric
and symmetric schemes are both IND-CPA (resp., IND-CCA)
secure, then the standard hybrid scheme is also IND-CPA (resp.,
IND-CCA) secure. The results of [3] imply that if the hybrid
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scheme is IND-CPA (resp., IND-CCA) secure, then it is also
IND-CPA (resp., IND-CCA) secure in the multiuser setting.
But this assumes that a sender uses fresh random coins each
time it encrypts a message including picking a new symmetric
key for each recipient. Thus, the results of [3] do not imply
that the hybrid SM-MRES we proposed is secure. Our results
(see Section X) imply that if the asymmetric and symmetric
schemes are both IND-CPA (resp., IND-CCA) secure, then
the corresponding hybrid SM-MRES is also IND-CPA (resp.,
IND-CCA) secure. More precisely, we construct a hybrid
SM-MRES using any symmetric encryption scheme and an
asymmetric SM-MRES. We show that if the symmetric scheme
is IND-CPA (resp., IND-CCA) secure and the SM-MRES is
IND-CPA (resp., IND-CCA) secure, then the corresponding
hybrid SM-MRES is IND-CPA (resp., IND-CCA) secure.! We
note that since not all hybrid SM-MRESs fall into a subclass of
RR-MRESs (savings can be achieved even when the coins used
to encrypt the symmetric keys are not reused) we do not apply
the reducibility theorem in our analysis. However, our results
imply that if the underlying SM-MRES is a secure RR-MRES,
all random coins can be reused in the encryption algorithm of
the hybrid SM-MRES.

G. Minimal Assumptions for Secure Randomness Reuse

A basic theoretical question is: under what assumptions
can one prove the existence of a standard encryption scheme
whose associated RR-MRES is a secure MRES? We determine
minimal assumptions. We show that there exists a standard
encryption scheme whose associated RR-MRES is IND-CPA
(resp., IND-CCA) secure if and only if there exists a standard
IND-CPA (resp., IND-CCA) secure encryption scheme. These
results, detailed in Section VIII, are obtained by transforming
a given standard encryption scheme into another standard
encryption scheme that permits secure randomness reuse. The
transformation uses a pseudorandom function and is simple
and efficient. However, one should note that the resulting
RR-MRES does not yield savings in bandwidth for broadcast
encryption.

H. Discussion and Related Work

ON REUSING RANDOMNESS. At first glance, reusing coins for
different encryptions sounds quite dangerous. This is because
of the well-known fact that privacy in the sense of IND-CPA
is not met if two messages are encrypted using the same coins
under the same key. (An attacker can tell whether or not the mes-
sages are the same by seeing whether or not the ciphertexts are
the same.) However, in an RR-MRES, the different encryptions,
although using the same coins, are under different keys. Our re-
sults indicate that in this case, security is possible. We consider
this an interesting facet of the role of randomness in encryption.

A recent paper [9] shows how to utilize reusing randomness
to achieve even better efficiency for some schemes. They con-
sider stateful encryption that generalizes MRES, and show that
batching can also be exploited when multiple messages are sent
to receivers (multiple or single.)

ITn fact, similarly to the case of regular hybrid encryption schemes, the sym-
metric scheme can satisfy a weaker security definition. We provide the details
in Section X.
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USING PRGS. A natural question is, instead of reusing ran-
domness, why not use pseudorandom bit generators (PRGs)?
Indeed, randomness generation costs for encryption can be re-
duced by picking a single, short random seed s and applying a
PSG G to obtain a sequence 71, ra, . . . of strings to play the role
of coins for successive encryptions. If G is cryptographically
secure in the sense of [12], [36], then it is easy to see that the
resulting encryption preserves semantic security, not only for
encryption to different receivers, but even for multiple encryp-
tions to a single receiver.

However, randomness reuse permits applications that usage
of pseudorandomness does not permit. A case in point is the ef-
ficiency improvements discussed above. Furthermore, random-
ness reuse is attractive even in the absence of such applications
because it is simple and efficient. A hardware implementation,
for example, would benefit from not having to spend real estate
on implementation of a pseudorandom bit generator.

RELATION TO BROADCAST ENCRYPTION. MRESs and broad-
cast encryption schemes (BESs) [19] differ as follows.

* In a BES, the key generation process may be executed by
the sender and yields a sequence of possibly related en-
cryption keys, one per recipient, while in a MRES, key
generation is like that of a standard scheme, meaning each
recipient produces (and registers) its own encryption keys
for its own use.

» In aBES, the encryption process takes as input a sequence
of encryption keys and a single message and produces a
single ciphertext C' called a broadcast ciphertext, while
in a general MRES, the encryption process takes as input
a sequence of encryption keys and a sequence of mes-
sages, and produces a corresponding sequence of cipher-
texts (C[1],. .., CIn]) one for each recipient.

Perhaps more succinctly, an MRES is simply a way to mimic,
or duplicate, the functionality of a standard encryption scheme
while attempting to use batching to obtain some cost benefits,
while broadcast encryption has a different goal. However, any
MRES can be transformed into a natural associated BES as fol-
lows. Recipients are given independently generated keys, and
message M is encrypted by running the multirecipient encryp-
tion algorithm with all messages set to M to yield a vector which
plays the role of the broadcast ciphertext and is sent to all recip-
ients. Each recipient extracts the component of the vector perti-
nent to it and decrypts this to obtain the broadcast message.

II. PRELIMINARIES

A. Notation

Let N = {1,2,3,...}. For k € N let Z; denote the ring of
integers modulo k. We denote by {0,1}" the set of all binary
strings of finite length. If X is string then |X| denotes its
length in bits and if X,Y are strings then X || Y denotes the
concatenation of X and Y. If S is a set then X <~ denotes that
X is selected uniformly at random from S. For convinience,
for any £ € N we will often write X1, Xo,..., X} £ as
a shorthand for X, & S;XgiS;...;Xn ES 1k e N
then 1% denotes the string consisting of k& consecutive “1”
bits. If A is a randomized algorithm and & € N, then the
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notation X & A(X1,Xo,..., X)) denotes that X is as-
signed the outcome of the experiment of running A on inputs
X1, Xo, ..., Xg. If Aisdeterministic, we might drop the dollar
sign above the arrow. When describing algorithms, X «— Y
denotes that X is assigned the value Y. “RPT” (resp., “PT”)
stands for “randomized, polynomial-time,” (resp., “polyno-
mial-time”) and “RPTA” (resp., “PTA”) for “RPT algorithm”
(resp., “PT algorithm”).

Everywhere in text & € N is the security parameter and n( - )
is a polynomial that denotes the number of recipients of en-
crypted messages.

B. Definitions

A function f : N — [0, 1] is called negligible if it approaches
zero faster than the reciprocal of any polynomial, i.e., for any
polynomial p, there exists n,, € N such that for all n > n,,
f(n) < 1/p(n).

ASYMMETRIC ENCRYPTION SCHEMES. We recall the standard
definitions, following [3] in extending the usual syntax to allow
a “common key generation” algorithm. Thus, an asymmetric
(public-key) encryption scheme AE = (G,K,E, D) consists of
four algorithms.

e The RPT common-key generation algorithm G takes as

input 1%, where k € N is a security parameter and returns
a common key I.

e The RPT key generation algorithm K takes as input a
common key I and returns a pair (pk, sk) consisting of a
public key and a corresponding secret key.

e The RPT encryption algorithm £ takes input a common
key I, a public key pk, and a plaintext M and returns a
ciphertext.

* The PT decryption algorithm D takes a common key I,
a secret key sk, and a plaintext M and returns the corre-
sponding plaintext or a special symbol L indicating that
the ciphertext was invalid.

Associated to each common key [ is a message space MsgSp(1)
from which M is allowed to be drawn. We require that the fol-
lowing experiment returns 1 with probability 1.

g G(1%); (pk, sk) & K(I); M & MsgSp(I).
If Dy sk (E1pe(M)) = M then return 1 else return 0.

We will use the terms “plaintext” and “message” interchange-
ably.

In our context, it is important to make explicit the random
choices underlying the randomized key-generation and encryp-

tion algorithms K, £. The notation (pk, sk) & K(T) is a short-
hand for r < Coinsi (I); (pk, sk) & K(I,r) and the notation
c& Er,pk(M) is thus shorthand for

r& Coinsg (1); C—Er pr(M, 1)

where Coinsy(T), Coinsg(T) are set from which &, £, respec-
tively, draw their coins. As the notation indicates, these sets can
depend on 1.

As an example to illustrate the addition of a common-key gen-
eration algorithm to the usual syntax, consider a Diffie—-Hellman



BELLARE et al.: MULTIRECIPIENT ENCRYPTION SCHEMES

based scheme. Here the common key I could include a descrip-
tion of a group and a generator for this group. Different parties
may have different keys, but the algorithms are all in the same
group.

SECURITY OF ASYMMETRIC ENCRYPTION. We recall the stan-
dard notion of security of asymmetric encryption schemes in the
sense of indistinguishability. We consider both chosen-plaintext
and chosen-ciphertext attacks. The ideas are from [22], [28],
[32].

Definition 2.1: Let AS = (G,K,&,D) be a public-key en-
cryption scheme. Let A¢p,, Acca be adversaries which run in
two stages and in both stages the latter has access to an oracle.
For b = 0,1 and atk € {cpa, cca} define the experiments

Experiment Expixﬂs{;ll;k (k)

1&g vk, sk) & K1)
(Mo, My, st) & AS, (find, I, pk)
C & g (M)

d & A9, (guess, C, st)

Return d

In the preceding st denotes the state information the ad-
versary wants to preserve. If atk = cpa then O = ¢ and
if atk = cca then O = Dy (). It is mandated that
|Mo| = |Mi]|, My, M1 € MsgSp(]) and Acc. does not make
oracle query C in the guess stage. For atk € {cpa,cca} we
define the advantages of the adversaries Advf“tlgy A, (k) as

Pr [Bxpiis 2 (k) = 0] - Pr [Bxpis L (k) =0].

The scheme A€ is said to be IND-CPA secure (resp., IND-CCA
cpa

secure) if the function AdvAg_’Acpa(-) (resp., Adve 4 (+)
is negligible for any RPT adversary.

The concrete-security considerations we will enter at some
points in this paper are facilitated by adopting some conven-
tions. Namely, the “time complexity” of the adversary above is
the worst case execution time of the associated experiment plus
the size of the code of the adversary, in some fixed random-ac-
cess memory (RAM) model of computation. (Note that the ex-
ecution time refers to the entire experiment, not just the ad-
versary. In particular, it includes the time for key generation,
challenge generation, and computation of responses to oracle
queries, if any.) The same convention is used for all other defi-
nitions in this paper.

III. MULTIRECIPIENT ASYMMETRIC ENCRYPTION SCHEMES

A. Syntax

An asymmetric multirecipient encryption scheme (MRES)
A8 = (G,K,E,D) consists of four algorithms. The
common-key generation algorithm G, key generation algo-
rithm /C, and decryption algorithm D are just like those of
an ordinary asymmetric encryption scheme. The RPT mul-
tiencryption algorithm £ takes input a common key I, a
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public-key vector pk =
vector M = (M[1],..., M[n]) and returns a ciphertext vector
C = (C]1],..., C[n]). Associated to each common key I is
a message space MsgSp(I) from which the components of
M are allowed to be drawn. We require that the following
experiment returns 1 with probability 1.

1&gk

Fori =1,...,ndo

(pkli], skli]) < K(I); M[i] < MsgSp(I) EndFor
C & & (M)
P&
If Dy sx;)(C[j]) = M]j] then return 1 else return 0

We do not specify how C[i] is communicated to user . It could
be that the whole ciphertext vector C' is sent via a broadcast or
multicast channel and, if all C[i] have a common part due to a
randomness reuse, this part can be sent only once. It could also
be that CJi] is sent to party 4 directly. This issue depends on
the specific application and is not relevant for security of the
scheme.

SENDING A SINGLE MESSAGE USING MRESS. In a single-
message multirecipient encryption schemes (SM-MRESs), the
encryption algorithm takes input a single message M (rather
than a vector of messages) and returns a vector of cipher-
texts. Formally, we say that A = (G,K,&, D) is an SM-
MRES if there exists a multiencryption algorithm & such that
(G,K,E,D) is an MRES as defined above and £ is defined by

gipk(ﬂl):
Let n be the number of components of pk

Fori=1,...n do M[i]«<M EndFor
4 8 5

Cli] < Epp(M,7)

Return C

B. Randomness Reusing MRESs

Construction 3.1: The randomness-reusing MRES
(RR-MRES) associated to a given asymmetric encryption
scheme AE = (G,K,E,D) is the multirecipient encryption
scheme A€ = (G,K,&,D) in which the common key gen-
eration, key generation algorithms, and decryption algorithms
are that of A€ and the multirecipient encryption algorithm is
defined as follows:

Erpk(M)
Let n be the number of components of M and pk
r& Coinsg ()
Fori = 1,...n do Cli]—&,;;;(M]i], ) EndFor
Return C
We refer to AE as the base scheme of AE. O

For examples of RR-MRESs see Section VIIL.
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IV. SECURITY OF ASYMMETRIC MULTIRECIPIENT SCHEMES

We provide the definition and follow it with a discussion il-
lustrating how it takes into account the various security issues
mentioned in the Introduction.

MODEL AND DEFINITION. Let AE = (G,K,&,D) be an
asymmetric MRES. (We are particularly interested in the case
where this is an RR-MRES scheme, but the definition is not
restricted to this case.) Let B be an adversary attacking AE. B
runs in three stages. In the select stage, the adversary is given
the number of users and an initial information string and outputs
a state information st and an integer [ such that 1 < [ < n(k),
which indicates that it wants to corrupt n(k) — [ users, assumed
without loss of generality to be users [ + 1,...,n(k). In the
find stage, the adversary is given the common key I, st, and
the public keys of the honest users 1,...,[. It outputs two
l-vectors of messages corresponding to choices for the honest
users; one (n(k) — [)-vector of messages corresponding to
choices for the corrupted users; an (n(k) — )-vector of random
coins which are later used in the key-generation algorithm to
create keys for the corrupted users (see the discussion below).
Based on a challenge bit b, one of the two [-vectors is selected,
and the components of the (n(k) — I)-vector of messages are
appended to yield a challenge n-vector of messages M. The
latter is encrypted via the multiencryption algorithm to yield a
challenge ciphertext C that is returned to the adversary, now
in its guess stage. Finally, B returns a bit d as its guess of the
challenge bit b. In each stage, the adversary will output state
information that is returned to it in the next stage. In case of
chosen-ciphertext attacks in the find and guess stages B is
given [ decryption oracles corresponding to the secret keys of
the honest users. We now provide a formal definition.

Definition 4.1: Let AE = (G,K,E,D) be a multireceiver
asymmetric encryption scheme. For atk € {cpa,cca} and b €
{0, 1} consider the experiments:

Experiment ExpZz ke ? (k)

(1) IEgar); @l st) & B (select, n(k), )
1 <1< n(k)
(2)Fori=1,...,1do (pkli],sk[i]) < K(I) EndFor
(3) (Mo, M1, M, coins, s) & BOL()»0t()(find, pk, s)
[[Mo] = [M| = &: |M] = n(k) - I
[lpk| = [; |coins| = n(k) — ]
4) Fori =1+1,...,n(k) do
(pk'[i], sk'[i]) < K (I, coins|i]) EndFor
(5) pk—(pk[L],. .., pk[l],pk'[l +1],...,pk'[n(k)])
(7) C — Erpr(M)
®) d & BO1()01() (guess, C, 5)
(9) Return d
Above, the oracles for 1 < 7 < [ are defined as follows: If atk =
cpathen O;(-) = eandifatk = ccathen O;(-) = Dr ox[i)( - ).
It is mandated that for all 1 < ¢ < [ we have |My[i]| = |M[7]]
and all message vector components are in the scheme’s message
space, and also that if atk = cca then the adversary B does
not query O;( -) on C[i]. The restriction on decryption oracle
queries is necessary since otherwise the adversary can decrypt
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the corresponding part of the challenge ciphertext vector and

therefore distinguish which plaintext vector was encrypted.
The adversary’s ind-atk advantage Advoz ’gk . )(k) is de-

fined as

Pr [ExpZes® (k) = 0] - Pr [ExpZeit (k) =0].

We say that MRES A€ is IND-CPA (resp., IND-CCA) secure

if the function Advj_;g);(_)( ) (resp., AdviE s . ()) is
negligible for any RPTA B and any polynomial n. O

SECURITY OF SM-MRESS. In order to define security
for a SM-MRES A€ for atk = {cpa,cca} we define
Exp;ﬂg"n];zzk_')b(k) similarly to Expj—g’ "gk?;? )(k) defined
in Definition 4.1, except now the adversary is not allowed to
corrupt users. Below, we specify the lines of the experiment
description that are different from those of Expj—; a;:? )(k),
the rest of the description is identical.

smmr-atk-b
AE Bmn(-) (k)

() I& gkl st) & B(select, n(k), I)
[l = n(k)]

Experiment Exp

(3) (Mg, M;) & BO:1():01(") (find, pk)
[[Mo| = M| = n(k); Moli] = Molj];
M, [i] = My [j]V1 < 4,5 < n(k)]

Let AE = (G,K,€,D) be a single-message multirecip-
ient encryption scheme. The adversary’s ind-atk advantage

Adv s":gmj_;, at(k)(k) is defined as

Pr [Expiay 0 (k) = 0] — Pr [Exp2ey = (k) = 0]

We say that SM-MRES AE is IND-CPA (resp., IND-

CCA) secure if the function Advj:;mBr q()a)(.) (resp.,
Adv;”;m]; flc(a)( )) is negligible for any RPTA B and any
polynomlal n. 0

ASYMMETRIC SCHEMES YIELDING SECURE RR-MRESS. It is
convenient to introduce a notion of security for base encryption
schemes based on the security of the corresponding RR-MRES.
We stress that the following is a notion of security for (standard)
asymmetric encryption schemes, not for MRESs.

Definition 4.2: Let AE be an asymmetric encryption scheme.
We say that it is RR-IND-CPA (resp., RR-IND-CCA, RR) se-
cure if the RR-MRES A€ associated to AE is IND-CPA (resp.,
IND-CCA, IND-CPA, or IND-CCA) secure. O

DiscussION. The previous works on the multiuser setting [3],
[1] only considered outsider attacks, meaning the adversary was
not one of the receivers. However, in the multirecipient setting it
is necessary to consider insider attacks. The adversary should be
allowed to corrupt some fraction of the users and choose secret
and public keys for them.
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To justify this claim consider the RR-MRES associated to the
ElGamal scheme. It can be shown to be wIND-CPA (a notion
similar to our IND-CPA, but that does not take into account in-
sider attacks, [27]). Now consider a modified encryption scheme
which differs from ElGamal in that its encryption algorithm
when invoked on one particular public key (e.g., ¢*) in addi-
tion to the ciphertext returns the randomness used to compute
it. When this scheme used in a multirecipient setting with ran-
domness reuse, the adversary can register this public key and
later, after receiving a ciphertext, can obtain the random coins
used to compute the ciphertexts of other users and thus break
the scheme. Under our model, the advantage of such adversary
in breaking this scheme will be 1. Even though the modified
scheme is contrived, this simple example shows an example of
insider attacks.

Consider another example which shows the importance of the
stronger model. Let AE" = (G',K’, £’,D’) be some IND-CPA
secure encryption scheme. Consider a multirecipient scheme
AE = (G,K',E,D), where G runs G’ to get I’ and outputs I’
and also a description of a group of prime order ¢ and a gener-
ator g, K runs K’ to get (pk’, sk’), picks a random element of
Z,, and outputs ((¢”, pk’)(z, sk’). Let us also assume that the
message space of AE’ includes Z,,. Let the encryption algorithm
of AE’ be as follows.

Algorithm & p (M)
rd Z,

For: =1,...,ndo

C'li] & &4, (r);Yi — g"s Wi — (97)" M[i]
C[i] «— (Y;, W;,C'[i]) EndFor

Return C

We omit the description of D. We claim that A& is wIND-CPA
secure while it is insecure in our model. We first prove the latter
claim by presenting a practical attack. An adversary A “cor-
rupts” the first user and chooses pk1 = (¢**, pk}) in normal way
so that it knows z1, skf. When A receives a ciphertext vector
C it decrypts C'[1] using sk’ and obtains r. Now A can com-
pute M[i] as W;(g**)~". Under our model of security A would
have advantage 1. We now show that AE is secure under the
weaker notion (WIND-CPA). Let B be an adversary attacking
wIND-CPA security of AE. Then it is possible to construct an
adversary D which attacks ElIGamal RR-MRES. D simply pro-
vides the common key and all the public keys it is given to B and
outputs message vectors that B outputs. D then receives a chal-
lenge ciphertext vector C'p, picks a random 7/, and computes
a challenge C'p for B such that Cg[i] = (Cpli], &7 1/ (17)).
Since AE’ is IND-CPA, then the view of B in the simula{ed ex-
periment is indistinguishable from the real experiment. There-
fore, the advantage of B is at most the advantage of D. But it
is proven in [27] that the latter scheme is wIND-CPA, so this
would imply that A€ is also wIND-CPA.

Moreover, for analyses of multirecipient schemes it is impor-
tant to take into account the possibility of rogue-key attack. This
can be particularly damaging in the context of random-string
reuse. For example, suppose the adversary registers public keys
(g°)? = g** and (¢%)3 = ¢>* where g” is the key of a legitimate
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user. Suppose that messages My, M, M are ElGamal encrypted
with the same randomness r under public keys g%, g>%, ¢3* and
broadcast to the users. Thus, the adversary sees the three corre-
sponding ciphertexts (¢", 9" - M1), (9", g°™ - M), (g", g°"* -
M). From them it can compute M; = [¢"* - M1] - [¢*"% - M] -
[¢°"® - M]~! and obtain the message addressed the legitimate
user.

As we mentioned in the Introduction, to prevent attacks of this
type we put some limitation on the adversary in this regard, in
particular to disallow it from creating public keys whose corre-
sponding secret keys it does not know. The model incorporates
this by requiring the adversary to supply a list of random coins
that are later used in the key-registration algorithm to create the
public and secret keys for the corrupted users. This models the
effect of appropriate proofs of knowledge of the random coins
used in the key-generation algorithm that are assumed to be done
as part of the key certification process. The alternative is to ex-
plicitly consider the certification process in the model, and then,
in proofs of security, use the extractors, guaranteed by the proof
of knowledge property [8], to extract the secret keys from the ad-
versary. This being quite a complication of the model, we have
chosen to build in the intended effects of the proofs of knowl-
edge.

V. NoT EVERY RR-MRES SCHEME IS SECURE

We consider general embedding schemes which first apply a
randomized invertible transform to a message and then apply a
trapdoor permutation to the result. An example of such a scheme
is RSA-OAEP [10] that has been proven to be IND-CCA secure
(in the random oracle model) [21] and hence is also IND-CCA
secure in a multiuser setting [3], [1]. Nonetheless, the associated
RR-MRES scheme is insecure. The attack is as follows. Assume
all users use public moduli of equal length and have encryption
exponent 3. Let V; be the public modulus of user . Suppose
the sender wants to send a single message M to three receivers,
namely, M = (M, M, M). Under the RR-MRES scheme, it
will pick a random string 7, using M and a random r will com-
pute a transform «, which with high probability will be in Z§
for all 4, set C[i] = x® mod N;, and send C[i] to 7. An adver-
sary given C can use Héstad’s attack [24] (based on the fact that
the moduli are relatively prime) to recover z, and them recover
M by inverting the transform. The same attack applies regard-
less of embedding method, since the latter must be an invertible
transform.

This indicates that secure randomness reuse is not possible
for all base encryption schemes: there exist base encryption
schemes that are secure, yet the associated RR-MRES is not
secure. In fact, no encryption scheme where the random string
used by the encryption algorithm can be obtained by the legiti-
mate receiver who performs the decryption, can be a base of a
secure RR-MRES. However, there are large classes of base en-
cryption schemes for which the associated RR-MRES scheme
are secure.

VI. REPRODUCIBILITY TEST AND THEOREM

We provide a condition under which a given encryp-
tion scheme can be a base of a secure RR-MRES. Informally
speaking, the condition is satisfied for those encryption schemes
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for which it is possible, using a public key and a ciphertext of
a random message, to create ciphertexts for arbitrary messages
under arbitrary keys, such that all ciphertexts employ the same
random string as that of the given ciphertext.

Definition 6.1: Fix a public-key encryption scheme
AE = (G,K,E,D). Let R be an algorithm that takes as
input a common and a public keys and ciphertext of a random
message, another random message together with a public-se-
cret key pair, and returns a ciphertext. Consider the following
experiment.

repr

Experiment Exp’,; R(k)
1 G(1%); (pk, sk) & K(I)
ME MsgSp(I);r il Coinsg (1)
C & &1 (M, r); (pk', sk') & K(I); M" & MsgSp(I)
If £ (M, r) = R(I,pk,C, M’ pk', sk’)

Then return 1 else return 0 EndIf

We say that AE is reproducible if for any k € N there ex-
ists an RPTA R called the reproduction algorithm such that
Exp ¢ (k) outputs 1 with probability 1. O

Later we will show that many popular discrete-log-based
encryption schemes are reproducible. It is an open ques-
tion whether there exist reproducible asymmetric encryption
schemes of other types.

We now state the main reproducibility theorem. It implies
that if an encryption scheme is reproducible and is IND-CPA
(resp., IND-CCA) secure, then it is also RR-IND-CPA (resp.,
RR-IND-CCA) secure.

Theorem 6.2: Fix a public-key encryption scheme AE =
(G,K,E,D) and a polynomial n. Let A = (G, K, E, D) be the
associated RR-MRES. If A€ is reproducible then for any RPTA
Bk, there exists an RPTA A,, where atk = {cpa, cca}, such
that for any &

Advmes atk

VIE B () (k) S (k) AV L (K). O

The proof is given in Appendix A.

VII. ANALYSIS OF SPECIFIC SCHEMES

In this section, we show that many popular encryption
schemes are reproducible. Using the known results about secu-
rity of these schemes and the result of Theorem 6.2 this would
imply that these schemes are also RR secure.

A. ElGamal

The ElGamal scheme in a group of prime order is known
to be IND-CPA under the assumption that the DDH problem
is hard. (This is noted in [15], [29], [16], [35].) We will look
at the IND-CPA security of the corresponding RR-MRES con-
structed as per Construction 3.1. We recall the EIGamal scheme
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EG = (G,K,&,D). The common-key generation algorithm G
on input 1%, where k € N is the security parameter, returns a
tuple (1%, G, q,9), where ¢ is a prime with 28— < ¢ < 2%, G
is a description of a group G of order ¢, and g is a generator of
G. The rest of the algorithms are as follows:

K((1*,6,4,9)) :
z & Ly, X—g*
pk—X; sk—x
Return (pk, sk)

Dy

g(lk,é,q,g),X (M) :

ré LY —g"
T—X"W«TM
Return (Y, W)

,G,q,g),r((yv W)) :
T—Y~*
M—WT-1

Return M

The message space associated to the common key (1%, @, q,9)
is the group G itself. Note that a generator g is the output of the
common key generation algorithm, which means we fix g for all
keys.

Lemma 7.1: The ElGamal encryption scheme

gg = (g IC767D)

is reproducible.

Proof: On input (I,pk,X,(g", qu) M, pk" sk'),
where I = (1’“,@,(}7 g),pk = g, pk’ = ¢g* ,sk' = 2/, aPTA
R returns (g7, (g7)" M"). It is easy to see that R always out-
puts a valid ciphertext which is created using the same random
string as the given ciphertext and therefore the experiment
Expg§ p(1%) always outputs 1. O

The fact that the ElGamal scheme in a group of prime order
is known to be IND-CPA under the assumption that the DDH
problem is hard, Theorem 6.2 and Lemma 7.1 imply that the
ElGamal scheme is also RR-IND-CPA or, equivalently, £G is
IND-CPA secure. However, according to Theorem 6.2 the se-
curity degrades linearly as the number of users n(k) increases.
In [4], we prove that it is possible to obtain a tighter relation
than the one implied by Theorem 6.2 that implies that security
of ElIGamal RR-MRES almost does not degrade as we add more
users.

B. Cramer—Shoup

We now consider an RR-MRES based on the Cramer—Shoup
scheme [16], [17] in order to get cost and bandwidth effi-
ciency and IND-CCA security properties. We first recall the
Cramer—Shoup scheme. The scheme uses a family of hash
functions H = (GH,EH) defined by a probabilistic generator
algorithm GH—which takes as input 1%, where & € N is a
security parameter and returns a key K, and a deterministic
evaluation algorithm £&H which takes as input the key K and
a string X € G? and returns a string EH (X) € {0, 15}
Without loss of generality, we assume that K € {0,1}". Let
G be a prime-order-group generator. The algorithms of the
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associated Cramer—Shoup scheme CS = (G,K,&,D) are as
follows:

g(lk) : K((1k767q7gl7927K)) :
- _ $

(1k767q791)£g T1,T2,Y1,Y2, 21,22 — Lg

$ R Xy T2
o & 6/{1} Al N

$ k d(_Ql g2
K — GH(1%) h <+ gitgs3?
I — (lk G K) 92
R I, » 4,91, 92, pk’(—(q d, }L)

eturn sk — (w1, 22,Y1,Y2, 21, 22)
Return (pk, sk)
gIaI’k(M) : ~ DI,sk((uth?e?v)) :
—_ =
Parse [ as (1%, G, g1, Parse I as (1%, G, g1, 92, K)
92, K) Parse sk as (21, %2, Y1, Y2,

Parse pk as (c,d, h) 21, 22)
rizq OU—gHK(ul;que)
U197 U2 < gy If v # ug "1V @yt =y
e—h"M Then return L EndIf
o —EHg (u1,uz,e) feuitug?
v c"dre M — e/f
Return (u1, us, e, v) Return M

The message space associated to the
(1k7 qu7917927K) is G.

common key

Lemma 7.2: The Cramer—Shoup encryption scheme
CS = (g7 K:7 57 D)
is reproducible.

The proof of the above lemma is simple and is similar to the
proof of Lemma 7.1.

Proof: We present a PTA R which takes as input acommon
and a public key and a ciphertext of a random message under this
key, another random message and a public-secret key pair and
returns a ciphertext.

Algorithm R(I, pk,C, M’ pk’, sk’)
Parse I as (1%, G, g1, g2, K)
Parse pk as (¢, d, h); Parse C as (u1,us,€,v)
Parse pk’ as (¢/,d’, 1)
Parse sk’ as (2, xh, y1, b, 21, 25)
e’ &uiiu;;M’; o — EHk(u1,us,€)
o e uﬂlﬂHyia’u;éﬂéa’
Return (uy,usg,€’,v")
Let us denote the random string used in a challenge ciphertext
C as r. First, we note that first two elements u; = g7, u2 = g5

of the output ciphertext are equal to the first two elements of a
challenge ciphertext C' as they should due to a fact that r is fixed.

Next we note that ¢/ = uj'us> M’ = g7 g, > M’ = (W')"M'.
This means that ¢’ and, thus, o/ are of the right form. Similarly

/xS a’uz’2+y;a’
1 2

’ ’ 7 ! 7 !
v =u I(Z1+‘IJ1O‘ )g;(rff’"lza ):(cl)r(dl)r(y

=9
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which is valid computation. Therefore, R always outputs a valid
ciphertext which is created using the same random string as a
given ciphertext and therefore Pr[Expy p(1%) = 1] =1. O

CS is proven to be IND-CCA secure assuming that the
DDH is hard and H is target-collision resistant [16], [17]. This
being a fact, Theorem 6.2 and Lemma 7.2 imply that it is also
RR-IND-CCA or, equivalently, CS is IND-CCA secure. As for
the ElGamal scheme, the security of the associated RR-MRES
degrades linearly with the number of users. In [4], we provide
a better security result than the one implied by Theorem 6.2.

VIII. FroM IND-CPA (IND-CCA) TO RR-IND-CPA
(RR-IND-CCA)

As shown in Sections V and VII, some practical encryption
schemes such as ElGamal and Cramer—Shoup are RR secure,
while some, e.g., RSA-OAEP, are not. We now provide a simple
method for an efficient transformation of any encryption scheme
which meets the standard notion of security into RR secure one.
The construction will use a pseudorandom function family; ac-
cordingly, we first recall the notion of pseudorandomness.

PSEUDORANDOM FUNCTION FAMILIES. Let kI : N — N,
il N — N,ol N — N be polynomially bounded,
polynomial-time computable functions, and let & € N be
a security parameter. A family of functions F' is a map
{0, 13 x {0,1}" — {0, 1}* which takes akey K € {0,1}"
and an input z € {0,1}" and returns a string y = F(K, M)
where y € {0, 1}01. The notation g & F is a shorthand for

K & {0, l}kl;g — F(K,-). We call g a random instance
of F. Let R denote the family of all functions of {0,1}" to

{0, 1}°l so that g ER denotes the operation of selecting at
random a function of {0,1}" to {0,1}°". We call g a random
function. An adversary D takes as input 1*, where k € N is the
security parameter, and has access to an oracle for a function
g :{0,1}" = {0,1}"" and outputs a bit.

Definition 8.1: Let I, R be as above, let D be a adversary.
The adversary’s advantage Adv>" (k) is defined as

Pr[Dg(lk)zl:giF] —Pr[Dg(ﬁ):l:giR}.

The function family F' is said to be pseudorandom if
Adv%ffD( -) is negligible for any RPT adversary. O

We now describe the transformation.

Construction 8.2: Fix an asymmetric encryption scheme
AE = (G, K, &, D) and let k be a security parameter. Let (1, pk)
denote a string containing I and pk. We assume that there exist
polynomially bounded, polynomial-time computable functions
il : N — N,ol : N — N such that for all & |(I,pk)| = il
and Coins (I) = {0,1}* for all I generated by G(1*) and all
pk generated by K(1%). Fix a polynomially bounded, polyno-
mial-time computable function k/ : N — N and fix a function
family F : {0, 1}“ x {0, 1}7’1 — {0, 1}01. Then a transformed
asymmetric encryption scheme AE’'[F] = (G, K, £, D) has the
same common-key-generation, key-generation and decryption
algorithms as A€ and the encryption algorithm is defined as
follows:
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Algorithm &, (M, 1)
r—F(r,(I,pk));C < & (M, 1)
Return C' O

In practice, a block cipher such as AES can be often used in
place F' (if it is fixed key, input and output lengths satisfy the
assumptions described above). Hence, the cost of the transform
is negligible.

Theorem 8.3: Fix an asymmetric encryption scheme AE. As-
sume that there exist functions 2/ : N — N,ol : N — N
satisfying the conditions defined above. Let AE[F] be a trans-
formed encryption scheme as per Construction 8.2. Let it be a
base scheme for the RR-MRES AE’[F] which is defined as per
Construction 3.1. Then if AE is IND-CPA (resp., IND-CCA)
secure and F is a pseudorandom function family then AE'[F)
is RR-IND-CPA (resp., RR-IND-CCA) secure, or, equivalently,
AE'[F] is IND-CPA (resp., IND-CCA) secure. O

The preceding theorem states the asymptotic security result.
In Appendix B, we prove the concrete security result and the
statement of the theorem follows.

The preceding results show that one can efficiently modify
any RSA embedding encryption scheme, e.g., RSA-OAEP,
which is IND-CCA secure (in the random oracle model), by
adding one application of a block cipher such that the resulting
scheme becomes RR-IND-CCA.

Corollary 8.4: The existence of IND-CPA (resp., IND-CCA)
secure asymmetric encryption scheme is a necessary and
sufficient condition for the existence of RR-IND-CPA (resp.,
RR-IND-CCA) encryption scheme.

Proof: Tt follows from Construction 8.2 and Theorem 8.3
that the existence of IND-CPA schemes and the existence of
PRF function families imply the existence of RR-IND-CPA
schemes. It is known that the existence of IND-CPA schemes
implies the existence of one-way functions [26] and the
existence of one-way functions implies the existence of pseu-
dorandom generators [25] which in turn implies the existence
of PRFs [23]. Therefore, the existence of IND-CPA schemes
implies the existence of RR-IND-CPA schemes. Similarly,
for the case of IND-CCA schemes. Another direction of the
corollary is trivial. O

IX. MULTIRECIPIENT SYMMETRIC ENCRYPTION SCHEMES

The results of this paper for the asymmetric-key setting can
be easily adjusted to the symmetric-key setting. We first re-
call syntax for symmetric encryption schemes and the corre-
sponding notion of security under a chosen-plaintext attack.

A. Symmetric Encryption Schemes

SYNTAX. Following [6], a symmetric encryption scheme
SE = (SK,8£,8D) associated with a message space
MsgSp(k) consists of three algorithms.

* An RPT key generation algorithm SK takes a security pa-

rameter k£ and returns a key sk.

* An RPT encryption algorithm S& takes sk and a message

M € MsgSp(k) to return a ciphertext C'.
¢ A PT decryption algorithm D takes sk and a ciphertext C
and returns a message M.
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We require that for all k € N, SD1,(SEsx(M)) = M for all
M € MsgSp(k).

SECURITY. Following [6], we recall the security definition of
a symmetric-key encryption scheme under chosen-plaintext and
chosen-ciphertext attacks.

Definition 9.2: Let SE = (SK,SE, SD) be a symmetric-key
encryption scheme. Let Ay, Acca be adversaries which run in
two stages and in both stages the former has access to an oracle
and the latter has access to two oracles. For b € {0,1} and
atk € {cpa,cca} define the following experiment.

Experiment Expfgt;;l;k (k)
sk & k(1%
(Mo, My, 8t) & Ay S€+ (100 (find, )
C & SE(My)
dd A58+ 090 ) (guess, O, st)
Return d

Above, st denotes the state information the adversary wants to
preserve. If atk = cpa then O = ¢ and if atk = cca then
O = Ds(-). It is mandated that |My| = |M;| and My, My €
MsgSp(k) above. We require that A.., does not make oracle
query C' in the guess stage. For atk € {cpa, cca} we define the
advantages of the adversaries Adv?’é‘, A, (k) as follows:

Pr [Exp'}tgk’;gtk(k) = 0} —Pr [Exp?g;ﬁtk (k) = 0} .

The scheme SE& is said to be IND-CPA secure (resp.,
IND-CCA secure) if the function Advie , (-) (resp.,
Advge 4 (-)) is negligible for any RPT adversary. O

We will also use weaker definitions of security for symmetric
encryption schemes, 1-IND-CPA and 1-IND-CCA. The only
difference with the above standard definitions is that an adver-
sary is not given the encryption oracles.

Obviously, any symmetric encryption scheme that is
IND-CPA secure (resp., IND-CCA secure) is also 1-IND-CPA
secure (resp., 1-IND-CCA secure). We remark that the latter
weak definition of security is called Find-Guess (FG) security
definition in [25].

B. Symmetric-Key MRESs

We now consider MRESs in the symmetric-key setting. The
syntax for such schemes SE = (SK,SE,SD) can be defined
similarly to the syntax of asymmetric MRESs defined in Sec-
tion II-B. The only difference is that in the symmetric-key case
we do not consider a common-key generation algorithm and in-
stead of a public/secret key pairs there are symmetric keys.

Again, we are interested in RR-MRESs. We can define them
in a symmetric-key setting similarly to Definition 3.1 for a
public-key setting. The only changes are as mentioned above.

SECURITY. Unlike the public-key environment, in the sym-
metric-key setting the possibility of a common randomness
being learned by a receiver after performing decryption is
not a threat since it cannot help a user to get any information
about non-legitimate messages. Moreover, for many symmetric
encryption schemes the random string used in an encryption
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algorithm is often public and a part of a ciphertext. Neverthe-
less, we still allow the model to consider insider attacks. The
reason is that it is reasonable to assume that secret keys could
be chosen by users and are not always random and independent.
The definition is analogous to the one for asymmetric setting,
but now the adversary is not asked to output random coins for
key generation and is given an encryption oracle which takes
as input a message vector and outputs a ciphertext vector.

Definition 9.2: Let SE = (SK,SE, SD) be a symmetric-key
MRES. Let B be an adversary. B has access to an oracle which
takes a vector. For b € {0, 1}, atk € {cpa,cca} and a polyno-
mial n define the experiments:

Experiment Exp 2 Eb ) (F)

(1!, sk’ st) & B(select, k,n(-))
[1 <1< n(k);|sk'| = n(k) -]
Fori=1,..., [ do skfi] & K(1*) EndFor

sk — sk||sk’

[[Mo| = |M1| = 1; IM| = n(k) — ]
M — (My[1],...,My[l], M[1],...,M[n(k) = 1])
C & SE4(M)
d & BSEa().01(-),, Ou(+) (guess, C, st)

Return d
Above, the oracles for 1 < 7 < [ are defined as follows: If atk =
cpa then O;(-) = ¢ and if atk = cca then O;(-) = Dy ().
It is required that |My[é]| = |M1][7]|, and are in MsgSp(k) for
all 1 < ¢ < n(k). If atk = cca, then the adversary B does not
query O;(-) on C[i]. We define the advantage Advg—ggtk( )
of the adversary, IND-CPA and IND-CCA security of the sym-
metric MRES analogously to the definitions for the asymmetric

case described in Section IV. O

REPRODUCIBILITY OF SYMMETRIC-KEY  ENCRYPTION
SCHEMES. The definition of reproducible schemes defined
in Definition 6.1 can be naturally lifted for the symmetric-key
setting.

Definition 9.3: Fix a symmetric-key encryption scheme
SE = (SK,S8&,8D). Let R be an algorithm that takes as
input a ciphertext of a random message, another random mes-
sage, and a secret key, and returns a ciphertext. Consider the
following experiment.

Experiment Exps¢'p (k)
sk & SK(1*); M & MsgSp(k)
r & Coinsge(k); C & S€.(M, 1)
sk & SK(1%); M’ & MsgSp(k)
If SEgp/ (M, 1) = R(C, M’ sk')
Then return 1 else return O EndIf

We say that S& is reproducible if for any k there exists an
RPTA R such that Exp ¢ (k) outputs 1 with probability 1.0
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The analog of Theorem 6.2 also holds for a symmetric-key
setting. It implies that if S€ is reproducible and IND-CPA then
it is also RR-IND-CPA.

Theorem 9.4: Fix a symmetric-key encryption scheme S€ =
(SK,SE,8D). Let SE = (SK, SE, SD) be the corresponding
RR-MRES. For atk = {cpa,cca}, if SE is reproducible then
for any RPTA B, there exists an RPTA A, such that

AdVSﬂEr,_g,t,li( . )(k) < n(k)AdVg‘tSk,A(k)- O

The proof follows the proof of Theorem 6.2, presenting
the adversary A which tries to break a symmetric encryption
scheme and uses the adversary B which attacks the associated
symmetric key RR-MRES. The main difference is that in
this case A has to answer B’s encryption oracle queries. The
problem is that A does not know one secret key corresponding
to its own challenge. But A has access to an encryption oracle
corresponding to this key. So it can query this oracle and then
use the reproduction algorithm to get the rest of the ciphertexts
to form a ciphertext vector as an answer to B’s query. The rest
of the proof in analogous.

CBC-BASED MRES. We recall the CBC encryption scheme.
The message space is a set of all strings whose length is
a multiple of s bits. The scheme uses a family of permu-
tations F : {0,1}* x {0,1}° — {0,1}*. F~! denotes
the inverse permutation. The key-generation algorithm of
CBC[F]| = (SK,S€&,SD) simply outputs a random k-bit string
sk, which specifies the permutation F'(sk, -) with a domain and
range {0,1}". Usuall,y F is a block cipher such as AES. The
encryption and decryption algorithms are defined as follows:

SEsk(M)
Parse M as M, ..., M,,
[s.t. [M;| = sforl < i < p]
Co & {0,1}°
Forv=1,...,pdo
C; — F(sk,C;_10&M;)
EndFor
Return Col|C1]|. .. ||Cp
8D (C)

Parse C as Cy, ..., C,,
[s.t. |C;] = sfor 0 < i < p]

Fori=1,..., p do
M; — F~Y(sk,C;) ® Ci_y
EndFor
M — My|...||M,
Return M

C) is often called the initial vector (IV).

Lemma 9.5: CBC encryption scheme CBC[F] =
SE,8D) is reproducible for any F.

(SK,
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Proof: An RPTA R takes as input R(Cy|Cq]...
|Cp, M', sk’) and returns C' = SEq v (M',Cy). It is easy
to see that R always outputs a valid ciphertext which is created
using the same random string C as a given ciphertext and

therefore Expg’gé[ ),z (k) always output 1. O

The result of [6] states that if F' is a pseudorandom function
family then CBC[F] is IND-CPA. It follows from this result and
form the reproduction theorem and Lemma 9.5 that CBC[F] is
RR-IND-CPA.

X. SECURE HYBRID SM-MRES

Construction 10.1: Let A = (G, K, €, D) be an asymmetric
MRES and let S€ = (SK, SE, SD) be a symmetric encryption
scheme. The single-message multirecipient hybrid encryption
scheme HS = (G,K, HE, HD) is an asymmetric SM-MRES
encryption scheme and its common key generation and key gen-
eration algorithms are the same as those of AE. The rest of al-
gorithms are as follows.

HE pi(M)

S HDr.s(C)
K & SK(1F) Parse C as C'||C”
Fori=1,...,n(k)do K — D 4.(C")

K[i]<— K EndFor

C' & i1 K)

C" & S py(M[1])

Fori=1,...,n(k) do
C[i] « C'[i]||C" EndFor

Return C

M — SDg(C")
Return M

Note that the second part of C[i] for all 1 < i < n(k) is
the same and can be sent only once thus permitting bandwidth
savings. The following theorem states that the above SM-MRES
is secure given that A€ and SE meet the corresponding notions
of security.

Theorem 10.2: Let A£ = (G,K,E,D) be an asymmetric
MRES and let S& = (SK,SE,SD) be a symmetric encryp-
tion scheme. Let HS = (G, K, HE, HD) be an SM-MRES con-
structed as per Construction 10.1. Then for any RPTA A there
exist RPTAs B, C such that for atk € {cpa, cca}

Advignatt (k) < 2Advimeatk

As,B,n(-)(k)+AdV}<—§%(k)- O

The proof is in Appendix C.

APPENDIX A
PROOF OF THEOREM 6.2

We first consider the case of chosen-plaintext attacks only
and then indicate how to extend the argument to the case of
chosen-ciphertext attacks. Let B be an adversary attacking the
RR-MRES AE. We will design an adversary A attacking the
scheme A€ so that

1
Advie 4 (k) >

n(k)
This implies the statement of the Theorem 6.2 for atk = cpa.
We begin by describing some hybrid experiments associated to

mr-cpa

R,B,n(-)( )-
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B and AE. It is convenient to parameterize the hybrids via an
integer j, where j is ranging from 0 to n(k).

Experiment Exp H;(k) [0 < j < n(k)]
1&gk, st) & Bselect, n(k), I)
Fori =1,...,1 do (pk[i], sk[i]) & K(I) EndFor

Fori=141,...,n(k) do
(pkli], sk[i]) < K(I, coinsy (I)[i]) EndFor
pk — (pk[1], ... pk[n(k)])
Ifj <lthen M — (My[1],..., My[j], Mi[j +1],...,
M. [l], M[1], ..., Mn(k) - 1])
else M — (M4[0],..., Mo[l], M[1],..., M[n(k) — 1))
EndIf
C & & (M)
dd B(guess, C, st)
Return d

Let P; def Pr[ExpH;(k) = 0] for j = 0,1,...,n(k). Now
we claim that
mr-cpa _
Advﬁ,B,n(.)(k) =P, — Po. 1)

This is justified as follows. We claim that

mr-cpa-0 k
Pr [Expﬂ;’n(_)(l )= 0} = Poy

and

Pr [Expj_gg’z({ (15 = 0} -y
and after subtraction (1) follows. We now justify the two equa-
tions above. In experiment Exp H,,()(k) we have j = n(k)
and a challenge ciphertext C' is computed by encrypting the
“left” vector of messages M under [ different public keys plus
the encryptions of the rest n(k) — [ messages, so that the B’s
“view” is the same as in experiment Exp% ;‘::(0 )(1k). On the
other hand, in experiment Exp Ho(k) we have 7 =0,and a
challenge ciphertext C' consists of [ encryptions of messages
from a “right” vector of messages under [ different public keys,
plus the encryptions of the rest n(k) — [ messagfis, so that B’s
mr-cpa- ( k)
*)

view” is the same as in experiment Exp——
p pAS,B,n(

Now we turn to the description of A.

Adversary A(find, I, pk)
(11,st") & B(select, n(k), I);j & {1,...,n(k)}
Ifj <lthenForie {1,...,57—1,7+1,...,1} do

(pkli]. sk[i]) < K(1); pk[j] — pk EndFor

else Fori = 1,...1 do (pkl[i], sk[i]) < K(I) EndFor
EndIf
(Mo, M1, M, coins,st') < B(find, I, pk, st')
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Fori =1+1,...,n(k) do
(pkli], sk[i]) < K(I, coins|i]) EndFor
If j > [ then My [j] — M[j]; M1[j] — M][j] EndIf
st «— (4,1, pk, sk, Mo, M1, M, st)
Return (M[7], M1[j], st)
Adversary A(guess, C, st)
Forie {l,...,57—1,7+1,...,n(k)} do

Ifi > [+ 1 then M’ — M[i] EndIf
If 7 < j then M’' «— Myli] else M' «— M[i]
EndIf

Cli] — R(I,pk,C, M’ pk[i], sk[i])
EndFor
c'—(C[1],...,C[i-1],C,C[j+1],...,C[n(k)])
d& B(guess, C’,st")

Return d

We claim that

n(k)
cpa- 1
Pr [Exp(k) = 0] = i S P 2)
j=1
and
n(k
P eparl(py — o] = 1 ()P» 3
r [EXPAS,A( )=0| = m ‘ j—1- &)
=1

Subtracting and exploiting the collapse of the sums we get

n(k)
cpa 1
Adve (k) = o) > Pi-Pia
j=1
1
= m[Pn(k) — Py
_ 1 mr-cpa
= n(k)AdvﬁJ?,n(-)(k)'

The statement of the theorem follows, so it remains to justify
(2), 3). Each value of j in {1, ..., n(k)} is equally likely for A.
The j’s ciphertext in B’s challenge ciphertext vector is an A’s
challenge ciphertext. Reproducibility of .AE guarantees that all
n(k) ciphertexts in a challenge ciphertext are computed using
the same random string. It is easy to see that the experiment
Expi{’;’_g(k) is the same as Exp H ;(k). Similarly, the experi-
ment Expi{?j(k) is the same as Exp H;_1 (k).

The running time of A is one of B plus one of R plus the time
to pick a number j < n(k) at random.

We provide a sketch of how to extend the proof to the
case of chosen-ciphertext attacks. The definition of the hybrid
experiments is the same with regard to how the inputs to B are
computed. Decryption queries are however answered truthfully,
using the correct secret key. The adversary A is given also
the decryption oracle Dy . (-) where sk is the secret key
corresponding to its input public key pk. It proceeds as before.
The novel elements is to provide answers to decryption oracle
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queries. When the query is to Dy 4, (-) for 1 < ¢ < l,i # j,
algorithm A can easily provide the answer since it is in posses-
sion of sk;. When ¢ = j, it provides the answer by invoking its
own given decryption oracle. The analysis proceeds as before.

O

APPENDIX B
PROOF OF THEOREM 8.3

We prove that for any RPTA Ay, there exist an RPTA ad-
versary Baik, where atk € {cpa,cca} and an RPT adversary
D, such that for any k£ € N

mr-atk N
AdVAE'[F],Amk,n( - )(k)

< n(k)AdvyE 5 (k) +2- Advi (k).

The statement of Theorem 8.3 is implied by this result. We first
prove it for the case of chosen-plaintext attacks and then show
how the proof can be extended for the case of chosen-ciphertext
attacks. Let R be a family of all functions of {0, 1}*" — {0,1}°".
Let A be an RPTA adversary attacking the security of the multi-
recipient scheme AE’[F]. We will construct an RPT adversary
D which attacks F' as a pseudorandom function family and an
adversary B which attacks the security of A€ such that

mr-cpa ( )

1
prf - . "
Advip(k) =5 (AdVAe'[F],A,n(-)

_ Adyhrera )(k)) )

AE'[R],An( -
1 -
cpa . mr-cpa
AdvAS’Bm(_)(k) > —n(k) dvAT[R]’A,n(_)(k) 5)

where AE'[R] denotes the encryption scheme which uses
a random function in place of the random instance of the
pseudorandom function family. This implies the statement
of the theorem. It remains to specify the strategies of D and
B. The adversary D takes k and has access to an oracle
g :{0,1}" = {0,1}°". Here is the algorithm for D.

Adversary D9()(1F)
bE 10,1}

I & gam);alst) & A(select, n(k), I)
[1 <1< n(k)]

Fori=1,....1do (pk[i], sk[i]) < K(I) EndFor
(Mo, M1, M, coins, st) < A(find, pk, st)

[IMo| = |M:| = 1;|M| = n(k) -]

(lpk| = I;|coins| = n(k) — ]
Fori=1+1,...,n(k) do

(pk'[1], sk'[i]) < K(I, coins]i]) EndFor
pk—(pk[1], ..., pk[l], pk'[l + 1], ..., pk[n(k)])
M — (My[1],..., My[], M[1],..., M[n(k) — 1))
c & ed (M)
d& A(guess, C, st)

If b = d then return 1 else return 0
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In the preceding algorithm, &’ z;c' ) denotes the procedure which
substitutes all applications of F'(7/,-) in &’pk( - )with an appli-
cation of g( -).

We now analyze the adversary. We claim that

Iy =1:0 _L. 1 mr-epa

Pr [D (k)=1:g F} =35 AN AP
I =10 _1.1 . mrepa

Pr [D (k)=1:9« R} =2+ 3 AN ()

The preceding equations are justified as follows. If g is an in-
stance of F' then A’s view in the simulated experiment is in-
distinguishable from its view in Expjrg;[??::n( (k). This is
true since in the real experiment the challenge ciphertext vector
for A’s guess stage is computed using an instance of the func-
tion family F' specified by the key, which is the random string
used by the encryption algorithm. In the simulated experiment,
D uses its oracle which is also a random instance of the func-
tion family F'. Similarly, if g is an instance of R then A’s view
in the simulated experiment is indistinguishable from its view
in Exp%_—:m( _ )(k) After subtraction we get (4).

We now prove (5). Let A be an adversary which attacks
the security of AE'[R]. We will use the hybrid experiments
Exp H;(k) for 0 < j < n(k) we defined in the proof of
Theorem 6.2, which are associated to A and the encryp-
tion scheme AE'[R]. Let P; ' Pr[ExpH,(k) = 0] for
j =0,1,...,n(k). Similarly to the proof of Theorem 6.2 we
claim that

mr-cpa

AE[R] Asn(- )(k) = Pug) — To. (6)

We now present the adversary B which attacks the security of
AE. Tt will use A. Here is the code for B:
Adversary B(find, I, pk)
(I,st') & A(select, n(k), I);j < {1,...,n(k)}
Ifj<lthenForie {1,...,j—1,7+1,...,(} do
(pkli), sk[i]) < K(I); pk[j]—pk EndFor
else For: = 1,...1 do
(pkli], skl[i]) & K(I) EndFor
EndIf
(Mo, M, M, coins, st) & A(find, pk, st)
Fori =1+1,...,n(k) do
(pkli), sk[i]) <& K (I, coins[i))
pk — (pk[1],...,pk[l], pk[l+1],...,pk[n(k)])
M[i] — M[i]; M[i]—M][i] EndFor
st — (I,j,0;pk,sk, My, M;st’)
Return (M[j], M1[j], st)
Adversary B(guess, C, st)
Forie {1,...,7—1,74+1,...,n(k)} do
If pk[i] = pk then M — Dy 41, (C)
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If M = M,|[j] then Return 0 else Return 1

Else
If 3p : 1 < p < i,pk[p] = pkl[i] then

T — T
Else r; & Coinsg (/) EndIf

EndIf
EndFor
Fori=1,...,75 — 1 do Cli]—& pfi(Mo[i], 7:)
Fori=j+1,...,n(k) do C[i] «+ Epgif(M [, i)
C;—C;d & A(guess, C,st’)
Return d

We now analyze the adversary B. All values of j in
{1,...n(k)} are equally likely for B, so we focus on one
particular value of j. If all the public keys created by B and
those which are output by A are different from B’s “challenge”
public key pk, then we claim that the view of A in the experi-
ment simulated by B is indistinguishable from A’s view in the
experiment Exp H ;(k). This is true since the only potential
difference among these experiments from A’s point of view is
how the values r; used as coin tosses for £ %, are computed.
In the experiment Exp H ;(k), the values r; are computed
as the output of a random function and B computes r; by
dynamically simulating a random function.

If at least one of the public keys created by B or one of those
which are output by A happens to be the same as B’s “chal-
lenge” public key pk, then A’s view in the simulated experiment
is different from its view in the experiment Exp H ;(k), since
for them to be the same B should compute the component of
C corresponding to this public key using the same randomness
as was used to compute its own challenge ciphertext C' (since
this randomness is the output of the random function invoked
on the same inputs), but B has no way of learning this random-
ness. However, in this case B learns the challenge secret key and
can always win its game by decrypting the challenge ciphertext.
Thus, we claim that

n(k)
cpa-0 c 1
Pr [Expdep(1) = 0] > ol ; P,
and
cpz}- k _ < .
Pr [Epré,B(l ) 0} < —n(k) 2 Pi_y.

Subtracting and exploiting the collapse of the sums we get
1 n(k)
Advie 4 (k) > o Z[Pj - Pj_1]
j=1
= < [Puy — P
1
= ——Adv
(k)

~—

3

mr-cpa

AE'[R],A,n(- )(k)

S

The above implies (5).
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We now sketch out how to extend the proof to the case of
chosen-ciphertext attacks. Both D and B now have to answer
A’s decryption oracle queries, which can be made to D, for
1 <2 < 1. D can easily do so since it possesses all the secret
keys ski,...,sk;. B knows all but one secret key, it does not
know sk; but it has access to a decryption oracle which corre-
sponds to this key. When A makes a query to D,,, B provides
an answer by invoking its own decryption oracle. The definition
of hybrid experiments remains the same, except that A can ask
decryption oracle queries, which are answered truthfully, using
the correct secret key. The rest of the analysis is as before.

It remains to specify running times of D and B. The running
time of B is that of A plus the time to pick a number j < n(k)
at random. The running time of D is one of A. O

APPENDIX C
PROOF OF THEOREM 10.2

Let A,k be an adversary attacking SM-MRES ‘HS. We first
define the following experiment:

Experiment Exp H %zitk (k)
[m € {1,2,3,4};atk € {cpa,cca}]
1&gk
Fori=1,...,n(k) do (pkli], sk[i]) <& K(I) EndFor
(1%, st) & Aaix(select, n(k), I);
If [ # n(k) then abort EndIf
(Mo, M1, st) & A (find, pk, st)
If 31 < 4,5 < n(-) such that

M[i] # Mylj] or M4[i] # M[j] then abort
EndIf

K & skk); k" & sk(k)

Ifl = 1orl = 2then C; <& SEx(My[1))
EndIf

Ifl = 3orl = 4then C; & SEx(M[1])
EndIf

Fori=1,...,n(k) do

Ifm =1orm = 4then Cy < & pi(K)
EndIf

Ifm =2 orm = 3 then Cy < Erpr(K")
EndIf

C — Cyli]||Cy
EndFor
If atk = cca and A, during find stage makes

a decryption oracle query C’ to oracle
HDrski( )

M «— HDr 4(C'[1]) EndIf
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return M to Acca

EndIf
d& A,k (guess, C, st)
If atk = cca and A, during guess stage makes

a decryption oracle query C” to oracle

HDI,ski('):
Ifm = 1orm =4 then M «— HDy . (C'[1])
EndIf

If i = 2 or m = 3 then parse C'[1] as C}||C}
If C}, = Cy[1] then M «— SDg(CY)
else M «— HDy 4 (C'[1]) EndIf
EndIf
return M to Aceca
EndIf
Return d

atk def m-atk S
Let pat = Pr[Exp H}5"\ (k) = 0] form € {1,2,3,4}.
It is not difficult to see that

Advsmmr—atk

_ atk atk
ﬁyAyn(.)(k) - P4 - Pl

_ (Pt Py
+ (P3atk _ P2atk) + (PQatk _ Platk>. (7)

We now claim the following.

Claim C.1: Forany k € N there exists an RPTA B; such that

patk _ patk < Adv%fj;;jjjz (k).

Claim C.2: For any k € N there exists an RPTA C such that

Py - Py < AdvEZE(R).

Claim C.3: Forany k € N there exists an RPTA B» such that

Py = PP < AdvEREE ().

For a fixed & € N, if

Advsmmr—atk

smmr-atk
Ethn(.)(k) > Adv )(k)

AE,Ba n(

then define adversary B = B; and B = B, otherwise. Then
the statement of the theorem follows from (7) and Claims C.1,
C.2, and C.3. It remains to prove the latter claims. O

Claim C.1: We consider a more general case of chosen-ci-
phertext attacks and then specify the changes pertaining to the
case of chosen-plaintext attacks. We present a pseudocode for
adversary Bj in Fig. 1.
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Adversary B (select,n(-), I)
(14, st') & A, (select, n(-), )
If [ # n(k) then abort EndIf
Return (n(k), st’)
Adversary Bf)"s““]('>"”’D"s"[”“‘”(')(ﬁnd., pk, st)
K & SK(k); K& SK(k)
Run A(:(:QHDLsk[l](')-««'H'D/.sk[.«(k)](')(ﬁnd’ pk, st')
When A, makes a query C’
to its decryption oracle HDj qi(i1(-) [1 <@ <n(k) ]
parse C’ as C})||C]
K" — Dy g5 (Ch) s M — SDin (C})
Return M to A,
Until A, outputs (Mg, My, st’)
If 31 <4,j <n() such that My[é] # Mp[j] or
M, [i] # M [j] then abort EndIf
€1 & SE(M[1]) : st — (pk, K, K, Ch, st')
Return (K, K, st)
Adversary Blp"’“‘“](')""’D"”””‘"”(')(guess,Cg,sf,)
Parse st as (pk, K, K',C}, st’)
For i =1...n(k) do C[i] — Cyli]||C: EndFor

When A, makes a query C” to its decryption
oracle HDy (1) [1 <4< n(k) ]

parse C” as C{||C}

If C(/] 7é Cg[l] then K" «— D[Ysk[i]<C[l))

M «— 8Dk« (C7) else M «— SDk(C7) EndIf

Return M to A,
When A

cca

outputs d, return d

cca

Fig. 1. The adversary for the proof of Claim C.1.

We comment on how B; answers A..,’s decryption oracle
queries. If the first (asymmetric) part of the ciphertext queried by
Acca is different from the elements of B ’s challenge ciphertext
(which are all equal) or if the challenge ciphertext is not yet
known to By, then B; can answer A..,’s decryption query by
using the corresponding decryption oracle on the asymmetric
part of the ciphertext to compute the symmetric key and then use
the latter to decrypt the symmetric part of the ciphertext. If the
asymmetric part of the ciphertext queried by A, is the same as
the elements of B;’s challenge ciphertext, then B; cannot use
its decryption oracles, but in this case, B knows the symmetric
key K and can just decrypt the symmetric part of the queried
ciphertext.

For the case of chosen-plaintext attacks, B1 and A.p, are not
given the decryption oracles, hence, B; would not need to an-
swer Acpa’s decryption queries.

Analyzing the adversary we claim that

Advsmmr-atk

AE,By,n(-)

_ smmr-atk-0 _
(k) = Pr [Exp—A&Bhn(_)(k - 0}
0

—Pr [Expf%‘fléfszil) (k) = }
< Pr [Exp HIZ, (4]
()]

— Pr |:EXP H:;—Egt,l;lamk

_ atk atk
— 44 = P3

and that B; runs in polynomial time. O

Claim C.2: Again we consider a more general case of chosen-
ciphertext attacks and then specify the changes pertaining to the
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Adversary CSPx()(find, k)

I&63a%); Fori=1...n(k) do
(pk[i], sk[i]) & K(I) EndFor

K& sKk); (11 st') & A, (select, I)

If | # n(k) then abort EndIf

(Mo, My, st') 3 AccaHDI,sk[l](')-”HDI,sk[n(k)](')(ﬁnd7
pk, st')

[C answers A_.,’s decryption queries

using sk[1],...,sk[n(k)]]

If 31 <4,j <n(-) such that Mg[i] # Mg[j] or
M, [i] # M [j] then abort EndIf

Co i Epk(M) 5 Cl i SEK (Mo[]])

st — (pk, Co, K', st")

Return (Mo[1], M [1], st)

Adversary CPx()(guess, Cy, st)

Parse st as (pk, Co, K', st’)

For i =1...n(k) do C[i] — Coli]||C1 EndFor

Run A, (find, C, st’) as follows

When A, makes a query C’ to its decryption oracle
HDpaciy(1) [1<i<n(k)]
parse C' as Cp|C1]
If C(I) 75 Co[l} then K" « DI,Sk[i](C(I])

M — 8Dk~ (Cy) else M «— SDk(C}) EndIf
Return M to A,

When A, outputs d, return d

Fig. 2. The adversary for the proof of Claim C.2.

case of chosen-plaintext attacks. We present a pseudocode for
an adversary C' in Fig. 2.

We comment on how C answers A..,’s decryption oracle
queries. If the first (asymmetric) part of the ciphertext queried
by Accq is different from C’s challenge ciphertext (which are
all equal) or when the challenge ciphertext is not known to C
yet, then C can answer A..,’s decryption query by using the
asymmetric secret keys. If the asymmetric part of the ciphertext
queried by A.., is the same as C’s challenge ciphertext, then C'
can just decrypt the symmetric part of the queried ciphertext by
querying it to its own decryption oracle.

For the case of chosen-plaintext attacks, C' and Ay, are not
given the decryption oracles, hence, C would not need to answer
Acpa’s decryption queries. Thus, we have

AdvgE(k) < P — Pt

and that C' runs in polynomial time. |

Claim C.3: The proof is similar to the proof of Claim C.1.
The main difference is that Bs will output (K’, K) at the end
of its find stage, when B, the proof of Claim C.1 outputs
(K',K). O
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