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ABSTRACT
An inference problem exists in a multilevel database if knowl-
edge of some objects in the database allows information with
a higher security level to be inferred. Many such inferences
may be prevented prior to any query processing by raising
the security level of some of the objects, however this in-
evitably impedes information access, as a user with low au-
thorization who queries just one of the objects with raised
security must seek clearance even when not in danger of
making the inference. More flexible access control is possible
when inferences are prevented during query processing, how-
ever this practice can result in slow query response times.
We demonstrate that access control can be made sufficiently
dynamic to ensure easy access to the information users are
entitled to, while retaining fast query processing. Our infer-
ence control schemes provide collusion resistance and have
a query processing time that depends only on the length
of the inference channels (not on the length of user query
histories). In addition, our schemes provide a property we
call crowd control that goes beyond collusion resistance to
ensure that if a large number of users have queried all but
one of the objects in an inference channel, then no one will
be able to query the remaining object regardless of the level
of collusion resistance provided by the scheme.

1. INTRODUCTION
In a multilevel database an inference problem exists if users
are able to infer sensitive information from a sequence of
queries that each have a low security classification (i.e. are
not sensitive). For example, any user may be able to query
a database to retrieve a list of ship names and the ports at
which they are docked. In addition, the knowledge of which
ports are being used to load ships with weapons may have
a low security classification. Yet, these two queries together
constitute an inference channel, because if both are made
then it’s possible to infer exactly which ships are carrying
weapons, and this may be sensitive.

When protecting against inferences, there is an inherent
trade-off between the granularity of the access control and
the query processing time. The approach to inference con-
trol proposed in [17; 21] requires essentially no query pro-
cessing. In [17; 21], the security levels of specific objects in
the database are raised in order to prevent a user with low
security clearance from completing enough queries to be able
to make an undesired inference. By ensuring that at least

one object in each inference channel requires high clearance,
low-clearance users are prevented from making inferences.
However, a user who only wants to query one particular ob-
ject whose security level has been raised will be unable to do
so without receiving additional authorization, even though
the information they seek may be completely innocuous on
its own. Hence, because access controls are predetermined,
this approach may impede access to information unneces-
sarily .

Another approach to inference control is to determine at
query time whether a query can be safely answered. This
can be done, for example, by maintaining user query histo-
ries. When a user makes a query it is checked against the
user’s query history and all known inference channels, before
granting access to the results of the query. More sophisti-
cated methods of query-time inference control use inference
engines to determine access [9]. However, since query his-
tories can be quite long, this approach can result in slow
query processing.

We introduce a new approach to inference control that al-
lows for fast query processing while enabling fine-grained
access control, and thus, flexible information access. In our
approach, access-enabling tokens are associated with objects
in the database, and users are allocated keys that they use
to generate the necessary tokens. Once a token is used to
query an object the key it was derived from cannot be used
to query any other object in the inference channel. This
is implemented by deleting (or, revoking) the tokens gener-
ated with this key from other objects in the channel. Hence,
query processing depends on the length of the channel rather
than the ever-growing user query histories. In addition, be-
cause initially the same tokens are associated with each ob-
ject, our approach allows for flexible information access. A
user can access any objects in the inference channel provided
doing so will not enable the user to make the undesired in-
ference, even through collusion with other users.

Our approach to inference control is inspired by crypto-
graphic revocation techniques for large groups of users. The
motivating intuition behind the use of these techniques is
that group dynamics play an essential role in ensuring in-
ference control: it is not enough to only consider the user
requesting the object when deciding whether or not to grant
access, instead all of the users of the database and all of the
queries they’ve made, should somehow be taken into ac-
count. The difficulty comes in finding a way to do this with-
out relying on the time-consuming processing of user query
histories. As an example, one might imagine solving the
problem by associating counters with objects in the chan-
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nel, and cutting off access to the channel when the counters
get too high. However, the counters reflect x queries by 1
user and 1 query by each of x users in the same way, and
this doesn’t sufficiently capture the access dynamics. By
leveraging ideas from group communications we are able to
provide some separation between these cases and an auto-
mated mechanism for updating the access controls that is far
more likely to be affected by large-scale querying by a few
users, than scattered queries by many users. More precisely,
our schemes provide collusion resistance and a desirable new
property that we call crowd control. Crowd control ensures
that if a large number of users have queried all but one of
the objects in the channel then no one will be able to query
the remainder of the channel even if they have never queried
the database before.

Overview. In Section 1.1 we discuss related work and in
Section 2 we provide the necessary background definitions
and notation. In Section 3 we provide our two inference
control schemes and in Section 4 we discuss their attributes
and highlight areas for future work.

1.1 Related Work
Our approach to inference control relies on the identification
of inference channels in an initial pre-query processing step.
Of course, it is impossible to identify all inference channels
[24] but previous work has demonstrated significant success
in identifying inferences both from the database schema [6;
17; 2; 26] and the data itself [5; 8; 28]. Our inference con-
trol techniques work with either approach, however we note
that if the latter approach is used then it should be re-run
periodically to accommodate changes in the data and this
could lead to a need to distribute additional keys to users
(if, for example, an inference channel of a length exceeding
all others is identified).

Inferences may also be detected at query processing time
(see [9; 25; 12]). This approach may lead to long query
processing since it most effectively operates on a user’s entire
query history (in conjunction with a logic-based inference
engine).

Once the channels are identified we assign keys to users and
tokens to the objects in the inference channels in such a way
that users have flexibility in the objects they choose to ac-
cess, provided the users are unable to complete the channel.
Because the queries made by each user must affect the ac-
cess capabilities of other users in order to ensure collusion
resistance and the desirable property of crowd control, we
draw inspiration for our schemes from secure group commu-
nication. In particular, the key allocation method employed
in our schemes is similar to what’s currently known as a
subset-cover scheme [14] in the group communication set-
ting. We believe that these cryptographic techniques are
in many ways better suited to the inference control prob-
lem than the group communication setting. For example, if
a large number of users have queried all but one object in
an inference channel then it may be wise to consider this
information to be in the public domain and to block all
users (even those who have never queried the database) from
querying the remaining object in the channel. The analo-
gous situation in group communication is the revocation of
an innocent user as the result of the revocation of several
unauthorized users. This is a well-known problem in group
communication that much work has gone into remedying

(see, for example, [10]) yet it is a desirable property of an
inference control scheme (what we call crowd control).

As mentioned in Section 1, an alternative approach to in-
ference control that can be viewed as fitting in our general
framework is to maintain a bit for each object indicating
whether or not it has been released as the result of a query
(see, for example, [9]). Our approach allows for more ac-
curate access control because we can distinguish between n
users each accessing m−1 objects in an inference channel of
length m, and n(m−1) users each accessing a single object in
the channel. The method of [9] cannot, and this distinction
is important since in the former case the remaining object
in the channel should probably be blocked from all users if
n is large, but in the latter case this may be unnecessary.

Finally, we note that if it is determined that a user’s cur-
rent query will enable them to make an undesired inference
then this may be prevented by using query response mod-
ification (see, for example, [9; 23]). Our techniques can be
used in conjunction with query response modification, that
is, rather than requiring that the user receive higher autho-
rization before completing the inference channel, it is also
possible to simply modify the response, provided that still
yields sufficiently useful information.

A survey of many of the existing approaches to inference
control is in [4].

2. PRELIMINARIES
We denote the number of users of the database by n, and the
users themselves by, U1, . . . , Un. We view inference channels
as being composed of objects. For our purposes, “object” is
a generic term to describe a unit of information that is recov-
erable from the database, for example, a fact, attribute or
relation. The example inference channel of Section 1 consists
of objects that are each relations: the relation between ships
and ports, and the relation between ports and weapons. We
use m to denote the number of objects in an inference chan-
nel, and let O1, . . . , Om denote the objects in the channel.
We sometimes refer to an inference channel of length m as
an m-channel. The ship-port inference channel of Section 1
is a 2-channel.

In the initialization phase, users receive a set of encryption
keys that they use to prove authorization (perhaps in addi-
tion to authenticating themselves to the database) to access
the objects in an inference channel. Users prove this by
encrypting some information specific to their object of in-
terest. For example, the token might be an encryption of the
attribute names needed to pose the query to the database.
Referring back to the example of Section 1, we might require
that the user form the token that is an encryption, under an
approved key, of the attributes “ship name” and “port” con-
catenated together (i.e. the attributes are first represented
as bit strings, then concatenated and then encrypted).1

We denote the set of keys allocated to Ui by Ki, i = 1, . . . , n.
Each encryption key may be known to several users. Before
any queries have been made, each encryption key can poten-
tially be used to access any object in the channel. However,
users only have enough keys to generate tokens for a proper
subset of the objects in the channel. We say a user has max-

1It is possible that with this approach a sequence of queries
will be treated as though they form an inference channel
when they do not. This is a common problem in inference
control. We discuss ways to remedy this in Section 4.
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imally queried the channel if they have used all possible keys
to query the channel. By limiting the number of keys per
user, we guarantee collusion resistance–a coalition of users
cannot together query all the objects in the inference chan-
nel. The following definition makes this more precise.

Definition 1. Let c be an integer, 0 < c ≤ n. We say
that an inference protection scheme is c-collusion resistant if
c users acting in collusion are unable to query all the objects
in any inference channel.

Once an encryption key is used to gain access to object Oi,
the same key cannot be used to gain access to any object,
Oj , j 6= i, in the same inference channel. This is accom-
plished by deleting (or, revoking) the tokens generated by
that key from the rest of the inference channel. In other
words, part of the automated access control mechanism is
to update the list of acceptable tokens for objects in the
inference channel each time an object in the channel is ac-
cessed (this processing time depends on the length of the
channel). Hence, because a key may be used by many users,
the queries of each user potentially affect the access capa-
bilities of many users. For example, if two of the keys used
to query an object in the channel belong to the same user,
then this user will be unable to maximally query the chan-
nel. These properties allow us to achieve a property that we
call crowd control: if a lot of users have queried a maximal
portion of an inference channel (e.g. m−1 out of m objects)
then no user should be able to complete the inference chan-
nel by making the remaining query. The reasoning here is
that if an object has been queried a lot it is more likely to
have been leaked and so it may be prudent to consider the
query results to be in the public domain. So, if this is the
case for most of the channel, access to the remaining object
should be explicitly prohibited.

Definition 2. Let 0 < ε < 1, and let U denote a ran-
domly selected user. Consider a c-collusion resistant in-
ference protection scheme. If when more than x sets of
c users have together queried some set of m − 1 objects,
Oi1 , . . . , Oim−1 , in inference channel {O1, . . . , Om}, then with
probability at least 1− ε, U cannot access the remaining ob-
ject, {O1, . . . , Om} − {Oi1 , . . . , Oim−1}, we say the scheme
has (x, c, ε)-crowd control.

Figure 1 is a high level example of how token sets, and con-
sequently access control, changes as a result of user queries.
The figure simplifies our approach in two ways. First, we
don’t show the keys each user receives, but rather just the
tokens they generate from them (depicted here as ovals).
The second, and more important, simplification is that to-
kens corresponding to different objects appear identical. In
reality, the tokens are particular to the object with which
they are associated, while the encryption keys used to gen-
erate them may be the same (see the discussion in Section 4
for more on this).

An important part of our analysis is assessing how informa-
tion access changes as more users query the channel. To do
this we need to understand how one user’s set of keys relates
to another user’s set of keys. This is important because with
each query the set of acceptable tokens for every other query
can change. More precisely, we often study how much the
key sets of one group of users, say U1, . . . , Ur, cover the key
set of user, Ur+1. The size of the cover is the number of keys

After U1 queries               
O1 and O2:

After U3 queries                     
O1 and O2:

Inference Channel of Length 3: { O1, O2, O3}

T3

4 Users:

U1’ s Tokens =

U2’ s Tokens =

U3’ s Tokens =

U4’ s Tokens =

Dynamic Inference Control:

Initial State:

T1 T2

Empty

U1 used token      
to query O1 and 
token     to query 
O2

U3 used token       
to  query O1 and 
token     to query 
O2

Figure 1: In this example there are four users each with two
tokens (or, two keys that they use to generate tokens) and
collusion resistance is c = 1. For i = 1, 2, 3, the ith column
indicates which tokens can be used to access object Oi after
the queries listed on the left hand side have been executed.
After both U1 and U2 have queried objects O1 and O2, no
one can query object O3 (it has no more acceptable tokens)
but everyone can still access both O1 and O2.

Ur+1 has in common with at least one of U1, . . . , Ur, that is,
the value: |Kr+1 ∩ (∪r

i=1Ki)|.
Finally, for simplicity of exposition, we often assume that
a fractional quantity (i.e. a

b
) is an integer. This should be

clear from context.

3. DYNAMIC INFERENCE CONTROL
We assume that inference channels have been identified (for
example, using a tool such as [17]) prior to the deployment
of our inference control scheme. Our protocol consists of
three phases:

• Key Allocation: Users are allocated (mmax−1)/c keys,
where mmax is the maximum length of an inference
channel in the database, and c is the desired degree of
collusion resistance.

• Initialization of the database: For each inference chan-
nelQ = {O1, . . . , Om}, a set of tokens, Ti, is associated
with each object such that each user is capable of gen-
erating exactly (m−1)/c tokens in Ti, for i = 1, . . . , m.
Initially, that is prior to any queries, the token sets are
identical: T1 = T2 = . . . = Tm.
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• Query processing: If token t ∈ Ti is used to gain access
to Oi, then for every s 6= i, any token in Ts that was
generated by the same key is deleted. Hence, the token
sets change as queries are made.

We present two schemes that differ in how the first stage
is completed; initialization of the database is essentially the
same for both and query processing is as described above.
The first is a simple randomized scheme that achieves prob-
abilistic guarantees on crowd control (that is, ε > 0). We
analyze that scheme according to the crowd control and in-
formation access it permits as a function of the number of
users querying the database.

We also present an algebraic scheme that offers deterministic
guarantees on information access. Due to space constraints
we do not analyze the scheme, although its analysis is similar
to that of the randomized approach.

3.1 A Probabilistic Key Allocation Scheme
To allocate keys to the users we adopt a “bucket”-based ap-
proach that is often used in secure group communication
(see, for example, [10]). Let there be (mmax − 1)/c buck-
ets, B1, . . . , B(mmax−1)/c, each containing q encryption keys
(that is, there are q(mmax − 1)/c keys total). The keys
themselves are randomly generated and are of a bit length
suitable for the symmetric encryption scheme being used.
For i = 1, . . . , n, Ui receives a randomly selected key from
each bucket for a total of (mmax − 1)/c keys per user.

Token sets for an inference channel of length m ≤ mmax are
formed by choosing a subset of (m− 1)/c buckets, Bi1 , . . . ,
Bi m−1

c

, and using the keys in each bucket to generate the

tokens for each object in the m-channel, as described in
Section 2 (i.e. initially, every key in Bi1 ∪ . . . ∪ Bi m−1

c

can

be used to access each object). Hence, before any queries are
made, each user has the ability to query any m−1

c
objects,

and so the scheme is c-collusion resistant. The following
theorem shows how, for a given value of ε, the degree of
crowd control afforded by the scheme depends on m and q.
The idea behind the theorem is that a large set of users are
likely to cover the key set of another user, so if these users
have maximally queried the channel, the other user will be
blocked.

Theorem 1. Let 0 < ε < 1, and let c denote the collusion
resistance of an instance of the probabilistic inference control

scheme. Let x = ln(1−(1−ε)c/(m−1))
ln(1−c/q)

then the scheme has

(x, c, ε)-crowd control.

Proof. It suffices to show that if more than

x = ln(1−(1−ε)1/(m−1))
ln(1−1/q)

sets of c users have queried m − 1

objects, Oi1 , . . . , Oim−1 , in an inference channel of length
m then the probability that a user U can query Oim is less
than ε. U is unable to query Oim if the key sets of the users
who have queried any of the other objects in the channel
cover the relevant part of U ’s key set (i.e. those keys of U ’s
that are useful for querying this channel). Of course, this
happens with probability 1 if U has made (m − 1)/c other
queries, and otherwise, the probability of this covering is at
least (1− (1− c/q)x)(m−1)/c. Setting the latter quantity to
be at least 1− ε and solving for x gives the quantity in the
theorem statement.

Crowd Control

(q = 10, m = 16)

P(U can query Om | x)

x =Number  of users who have 
each quer ied O1,…,Om-1

Figure 2: This figure shows how U ’s access to an object
in an m-channel changes as the number of users who have
each accessed the m− 1 other objects in the channel grows.
Here, c = 1, q = 10 and m = 16 (hence, this scheme can
accommodate 1015 users). When the number of users is 70
or more, U can only access the object with probability at
most .01.

Note that this theorem can be used to lower bound the prob-
ability that U can access object Om when x sets of c users
each have accessed any portion (i.e. not necessarily a max-
imal portion) of O1, . . . , Om−1. However, it is a far weaker
bound in this case. We claim that this is as it should be: if
a large number of users have maximally queried the chan-
nel then for security purposes the remainder of the channel
should be blocked, however if the users have only partially
accessed the channel then the security risk to leaving it ac-
cessible is far less. To get a better idea of how access changes
as a function of x, we include a concrete example of the ac-
cess probabilities in Figure 2.

Theorem 1 shows that if a particular (m − 1)-subset of the
objects in a channel has been queried a lot, then users will be
unable to query the remaining object in the channel whether
or not they’ve already made some queries. It’s likely that
most users will still be able to access some ((m−1)/c)-subset
of the queried objects, however, as the following lemma
shows.

Lemma 1. Let 0 < ε < 1, and let c denote the collusion
resistance of an instance of the probabilistic inference control

scheme. If x > ln(1−(1−ε)c2/m2
)

ln(1−1/q2)
users have each maximally

queried an m-channel, then with probability greater than
1− ε, a user U , who is not amongst the x users, can maxi-
mally query the same channel.

Proof. A user U cannot maximally query the channel
if two of U ’s keys have been used to query a single object.
This is impossible if for every pair of U ’s keys, one of the
users who has maximally queried the channel has both such
keys. The probability of this is at least (note this is a coarse

bound): (1− (1− 1/q2)x)(m/c)2 . Setting this quantity to be
greater than 1 − ε, we get the bound in the lemma state-
ment.

The above results demonstrate how a threshold number of
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queries to a channel affect the access capabilities of other
users, but they don’t describe how information access changes
before the threshold is reached. We prove a lower bound
on information access as a function of the number of users
querying the channel by using the fact that any of U ’s keys
that have not been used to query an object in the channel,
may be used to query any object in the channel.

Theorem 2. Let 0 < α < 1. Consider a c-collusion re-
sistant instance of the probabilistic inference control scheme.
If the number of users who have maximally queried the chan-

nel is x < q(1−α)εc/((m−1)(1−α))

e
then with probability at least

1 − ε, another user can access any subset of objects in the

channel of size α(m−1)
c

.

Proof. Consider a set of x + 1 users, U 6∈ {U1, . . . , Ux},
the expected number of U ’s keys that U1, . . . , Ux cover, is
(m−1)x

cq
. We show that the probability that U1, . . . , Ux cover

more than 1− α of the keys U has for querying the channel
is less than ε. From Chernoff bounds [13], it follows that
this is true when the following inequality holds:

( e(q(1−α)/x)−1

(
q(1−α)

x
)

q(1−α)
x

)
(m−1)x

cq < ε. This inequality is satisfied by

the x bound given in the theorem statement.

To reduce user U ’s access to an inference channel, two users
sharing distinct keys with U must use these keys to query
the same object, O, in the channel. In such a situation,
U is unable to use either key to query other objects in the
channel, while U only needs one of the keys to query O,
hence one of U ’s keys cannot be used. Hence, restricting
a user’s access to the channel requires more about the key
allocation structure than we use in Theorem 2, and so we
suspect that this lower bound is generally not tight (and
Lemma 1 provides particular evidence that it’s not tight).

3.2 A Variant with Deterministic Guarantees
The key allocation scheme of Section 3.1 guarantees crowd
control and information access probabilistically as a func-
tion of the number of users querying an inference channel.
In some settings deterministic guarantees are necessary. We
can achieve some deterministic guarantees by using error-
correcting codes to allocate keys to users. Specifically, we
use Reed-Solomon codes (see, for example, [27]) to allocate
keys to users. Reed-Solomon codes use a polynomial that’s
unique to each user to determine each user’s codeword, or
in our case, key set. Because two polynomials of the same
degree intersect on at most as many points as their degree,
two users in our inference control scheme will share at most
as many keys as the degree of their polynomials. Using this
fact, we construct a scheme with deterministic (i.e. ε = 0)
information access guarantees. The following makes the key
allocation part of such a scheme more precise, the initializa-
tion of the database and the query processing are both just
as before.

We consider all polynomials of degree t, 0 < t < (mmin −
1)/c, over the finite field Fq of q elements, where mmin is the
minimum length of an inference channel. To each user, U , we
associate a unique such polynomial, pU (x) ∈ Fq[x]. For each
element (γ, β) ∈ Fq × Fq we generate a random key, kγ,β of
the desired bit length. User U receives the set of keys KU =
{kγ,pU (γ)|γ ∈ A ⊆ Fq}, where A is a set of size (mmax −
1)/c. Note that this is very similar to the bucket-based

construction of Section 3.1 except that using polynomials
to allocate keys from the “buckets” gives more control over
the overlap between users’ key sets. The following lemma
demonstrates one of the deterministic guarantees provided.

Lemma 2. Consider a c-collusion resistant inference pro-
tection scheme that uses the key allocation method of this

section. If x < (m−1)(1−α)
ct

users have maximally accessed
an m-channel then another user can access any subset of

objects in the channel of size α(m−1)
c

with probability 1.

Proof. Consider a user U who is not among the x users
who have maximally accessed the channel. U shares at most
t keys with each of the x users, and so at most

tx < t( (m−1)(1−α)
ct

) = (m−1)(1−α)
c

keys total. Hence, U has

more than α(m−1)
c

keys that none of the x users have and can
access a different object in the channel with each key.

An analysis very similar (but a bit more involved due to
the fact that keys aren’t assigned independently) can be
performed to prove crowd control and lower bounds on in-
formation access. The scheme performs comparably to the
earlier one.

4. DISCUSSION AND OPEN PROBLEMS
We have concentrated on a single inference channel for sim-
plicity of exposition. When using our methods to prevent in-
ferences across multiple channels a potential problem arises
when a single object appears in channels of different lengths.
To ensure that no inferences can be made by exploiting the
varying channel lengths it may be necessary to reduce the
number of acceptable keys associated with objects in over-
lapping channels, thus reducing information access.

In addition to focusing on a single channel we have also as-
sumed a fixed user base. Over time, however, it is likely that
users will lose access to the database (i.e. be revoked) and
new users will be added. The scheme of Section 3.1 has a
fixed upper bound on the number of users it can accommo-
date: q(mmax−1)/c (the bound for the scheme of Section 3.2
may be less depending on t). To allow for the addition of
new users we can choose q to be larger than is currently
required. Of course, this will have consequences for crowd
control: increasing q means users’ key sets are more disjoint
and so the queries of individual users tend to have less of an
impact on the access capabilities of others.

When a user is revoked from accessing the database their
keys must no longer be valid. Simply deleting the tokens
generated from their keys might unfairly restrict the ac-
cess of others, so rekeying of the valid users may be needed.
There is a large body of work on revocation in group com-
munication that we may leverage for this problem. For ex-
ample, efficient techniques for key updating over a broadcast
channel are provided in [16; 10]. In addition, we note that
protection against key leaks can be built into the key allo-
cation scheme by ensuring that if a group of users pool their
keys a leak a subset of the resulting pooled set, we will be
able to trace at least one of the culprit users. Such tracing
capability can be incorporated into exactly the type of key
allocation we use in this paper (see, for example, [19] ) but
it will tend to increase the crowd control threshold, x.

As mentioned earlier (and as Lemma 1 indicates) our lower
bound on information access for the scheme given in The-
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orem 2 isn’t tight. A proof that takes more of the combi-
natorics of the key allocation scheme into account should
produce a better bound. In addition, there may be ways to
reduce user storage while retaining inference control. Using
similar techniques to those in [14], it may be possible to al-
locate to each user a smaller set of keys that they can then
use to generate additional keys, and thus, tokens.

Our approach offers more flexible information access than
existing approaches with fast query processing, but it still
may not offer quite the flexibility afforded by schemes that
rely on user query histories to determine access control. This
is because, as mentioned in Section 1.1, we require users to
form tokens that are derived from information that’s spe-
cific, but not necessarily unique, to the object of the user’s
interest. We could easily base the tokens on unique infor-
mation but we think that doing so will increase the total
number of inference channels so much as to negatively im-
pact performance.

Finally, we note that with our schemes it is possible to de-
termine what information the user could have accessed just
from the current access control state (i.e. the value of the
token sets at various points in time). For example, any key
that appears in a token set Ti and no others must have
been used to query object Oi, whereas a key that appears
in all the token sets could not have been used. Hence, if a
user is known to be compromised, the authorities can use
their knowledge of the user’s keys to determine what infor-
mation the user could have accessed. Of course, provided
the users’ keys sets are kept private unless such a security
breach occurs, the fact that keys are shared amongst users
also provides desirable privacy to the users of the database.
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